
Handling Catastrophic Failures in Scalable Internet Applications

Michael Haungs
Computer Science Department

California Polytechnic, San Luis Obispo
mhaungs@csc.calpoly.edu

Raju Pandey, Earl Barr
Department of Computer Science

University of California, Davis
email:

�
pandey, barr � @cs.ucdavis.edu

Abstract

User perceived quality is the most important aspect of
Internet applications. After a single negative experience,
users tend to switch to one of the other myriad of alterna-
tives available to them on the Internet. Two key compo-
nents of Internet application quality are scalability and re-
liability. In this paper, we present the first general-purpose
mechanism capable of maintaining reliability in the face
of process, machine, and catastrophic failures. We define
catastrophic failures as events that cause entire clusters of
servers to become unavailable such as network partition-
ing, router failures, natural disasters, or even terrorist at-
tacks. Our mechanism utilizes client-side tunneling, client-
side redirection, and implicit redirection triggers to deliver
reliable communication channels. We capitalize on previ-
ous work, Redirectable Sockets (RedSocks), that focuses on
Internet application scalability. RedSocks are communica-
tion channels enhanced with a novel session layer aimed
at modernizing network communication. We modify Red-
Socks to create the first fault tolerant socket solution that
can handle all server-side failures. Our mechanism is com-
patible with NATs and Firewalls, scalable, application in-
dependent, and backwards compatible.

1 Introduction

It is crucial for Internet applications to be available 24-7.
One study found that two-thirds of Internet users will rarely
return to a site after a single bad experience [9]. Bhatti et
al. [2] state, “Users have too many web sites that they can
use as alternatives if they are either refused entry to one site
or are given particulary slow service.” For some popular
web services, a single server failure can result in tens of
thousands of lost customers.

To achieve 24/7 availability, Internet applications need
to be scalable and reliable. The most popular solution to
scalability is to construct multiple clusters of commodity
servers and route incoming requests to them via a mecha-

nism such as DNS Round Robin [3] or URL-rewriting [7].
L4 or L7 switches are then used for intracluster load balanc-
ing. No standard solution exists for making Internet appli-
cations reliable, but researchers have proposed a number of
ideas [1, 11, 13, 8]. One reason for the lack of a standard so-
lution for reliability is the tension that exists between relia-
bility and scalability. Scalable systems are more complex or
introduce central failure points which increases the vulner-
ability of the server system. While overly cautious failover
mechanisms directly affect system scalability by increasing
server response latency.

Current approaches to Internet application reliability fall
into two categories. The first category, connection redirec-
tion, insures new connections reach a healthy server. Both
DNS and network switches, such as Cisco’s LocalDirec-
tor [4], can be configured to incorporate server health infor-
mation in their connection routing. Connection redirection
complements the second category, communication fault tol-
erance. The goal here is to allow existing communication
channels to persist in the face of machine failure. Most so-
lutions use primary-backup or log-based recovery.

However, no solution addresses catastrophic failures.
We define catastrophic failures as failures that completely
block all communication from the current server cluster to
the client. These failures can result from accidently cut
transmission lines, router hardware failures, natural disas-
ters, or even terrorist attacks. After a catastrophic failure,
only the client and a route to an alternate server cluster ex-
ists. From this, the existing communication channel must
be reconnected to an alternate cluster and all communica-
tion state and associated application state reconstructed.

We define a fault tolerant socket as a communication
channel between two applications, typically a client and a
server, that persists in the face of a process, machine, or
catastrophic failure. In Figure 1, we illustrate where fail-
ures can occur along a communication channel and put them
into two categories: server-side and client-side. Attempts in
increasing server application reliability often target process
(A) and machine (B) failures. Using a redundant router han-
dles an error at the entry point (D) to the Internet applica-

tion. Cut cables or Earthquakes are examples of events that
can cause the complete failure of server clusters (C) and as-
sociated entry points (D). There are two types of failures
that occur in the Internet outside the server’s administra-
tive domain. The first are errors that can be circumvented
via normal IP routing recovery (E). The second (F) occurs
when there is no alternative path from the client to the origin
server cluster. We categorize failures at points A through F
as server-side errors. Fault tolerant sockets must handle all
server-side failures. Client-side failures (H, I, and J in Fig-
ure 1) are beyond the scope of Internet server applications.
Put another way, fault tolerant sockets persist as long as the
client does.

E F

Internet

H

J
I D

A
B

C

Figure 1. Various failure points along
a client/server communication channel.
Server-side failures are: (A) Process, (B)
Machine, (C) Cluster, (D) Switch, (E) Router
with alternate route, and (F) Router with no
alternate route. Client-side failures are: (G)
Router, (H) Machine, and (I) Process.

To handle server-side errors, a failover mechanism must
be able to detect that a failure occured, recover in-flight
data, construct a new communication channel to an oper-
ational server, and provide a method to synchronize com-
munication and application state. It must do this in a scal-
able way to be practical. Last, it must be compatible with
methods for handling new connection redirection and be ap-
plication independent.

One way to implement fault tolerant sockets is to use
an existing intracluster mechanism and make it an inter-
cluster mechanism. This involves relaying network packets
between clusters for every network packet received from a
client. This transaction must complete before responding to
the client. This exasperates the scalability problem. With
this type of solution, you minimally double the amount of
traffic seen in individual clusters and increase the server re-
sponse time by the roundtrip latency between clusters. We
do not explore this method.

In this paper, we present our implementation of fault tol-
erant sockets. We propose a method that relies on client-
side support. Client-side support consists of a redirec-

tion mechanism (client-side redirection), a method to detect
communication channel errors to trigger redirection (im-
plicit redirection triggers), and data synchronization (client-
side tunnelling). We first introduced the idea of client-side
support in [5] where we discuss using it for connection redi-
rection. We developed RedSocks which uses our session-
layer protocol, the Endpoint Operation Protocol (EOP), that
allows a server to redirect connections in a flexible, scal-
able, and application independent way. In this paper, we
augment EOP to allow RedSocks to provide communi-
cation fault tolerance. Our solution is client transparent,
compatible with NAT’s and Firewalls, backwards compat-
ible with normal sockets, application independent, handles
catastrophic failures, and works with high-performance In-
ternet applications.

In Section 2, we present our fault tolerant socket solu-
tion. We follow with a discussion on the details of our im-
plementation. We present experiments, in Section 4, that
demonstrate the efficacy of fault tolerant RedSocks. We
conclude with a presentation of related work and some part-
ing thoughts.

2 RedSocks Fault Tolerance

We have extended BSD sockets with a our session
layer protocol, EOP, that generates redirection events and
enables endpoint redefinition. We call such sockets Redi-
rectable sockets or RedSocks. We looked at explicit redi-
rection events in [6] to increase the scalability of internet
applications. We now look at RedSocks and implicit redi-
rection events to construct fault tolerant sockets.

2.1 Failover Semantics

We describe the semantics of redirection in RedSocks
through a simple example. As shown in Figure 2(a), a com-
munication channel exists between two nodes, � and � .
An error at � generates an implicit redirection event that
changes the “B” endpoint of the channel to � (see Fig-

x

X

y

z
Z

A B

C

A

C

A B

B

(a) Communication channel

(c) New connection creation

A B

new channel
(d) Communication on

(b) Error Triggers
Redirection Event

Redirect
Implicit

Figure 2. Failover from endpoint B to C

2

Server 1 Client Server 2Server 1 Client Server 2

Server 1 Client Server 2

(b) Client Send error with Server Checkpointing

Server 1 Client Server 2

connect()
EOP Handshake

send(y)

recv(y)

FTHB,

accept_st(0)

accept_st()

setsockopt(HB)

setsockopt(FT)

recv(y)

send(Y)

(a) Client Send error without Server Checkpointing

setsockopt(FT)
setsockopt(CP)
setsockopt(HB)

accept_st() connect()
EOP Handshake

CP,FTHB,

setsockopt(CP)
send(X)

recv(X)

recv(y)
recv(Y)

send(y)

accept_st(CP)
process CP
recv(y)
send(Y)recv(Y)

(c) Client Recv error without Server Checkpointing

setsockopt(HB)

accept_st() connect()
EOP Handshake

HB,

HB,FT

send(y)

recv(y)
recv(Y)

accept_st(0)

recv(y)

send(Y)

send(z)

recv(z)

(d) Client Recv error with Server Checkpointing

setsockopt(FT)
setsockopt(CP)
setsockopt(HB)

accept_st() connect()

setsockopt(CP)

CP

send(X) CP

send(y)
recv(X)

recv(y)
recv(Y)

process CP
recv(y)
send(Y)

send(z)

recv(z)

accept_st(CP)

setsockopt(FT)

Figure 3. Implicit Redirection Event Timeline

ure 2(b)). � represents a node that may equal � , � or a
completely different node. EOP responds to the implicit
redirection event by creating a new channel between � and

� , synchronizing application and communication state, and
removing the channel between � and � as seen in Fig-
ure 2(c). In Figure 2, a lower-case letter in a box represents
a request and the corresponding upper-case letter represents
the response to that request.

2.2 Implicit Redirection Events

Implicit redirection events are generated by errors on the
communication channel and serve as triggers for failover.
Detecting these errors is not trivial and is explained in Sec-
tion 3. Implicit redirection is enabled and conditioned via
the setsockopt system call. We define three new EOP
socket options — heartbeat, checkpoint, and failover list.
The EOP heartbeat option starts a heartbeat mechanism, at a
rate determined by the server, on the client side of the com-
munication channel. The heartbeat mechanism is necessary
for detecting host failure or network partitioning, because
normal TCP detection of these errors typically takes well
over twenty minutes. The EOP checkpoint option buffers
server application state at the client and is used to update
the alternate server to which the client is directed. Alter-
nate servers are provided to the client-side EOP by the EOP
failover list option. No failover can occur until this option is

set by the server. The last component that enables implicit
redirection is that the client side EOP layer buffers the last
data sent and can resend this data, if necessary, to handle in-
flight data. Our form of failover has several appealing prop-
erties. First, our mechanism depends only on communica-
tion channel feedback, i.e. TCP errors, and eliminates the
need for 3rd party health monitors prevalent in other solu-
tions. Second, the mechanism directly handles state transfer
and synchronization. Other solutions, see Section 5, often
involve dedicated backup servers or complex communica-
tion channel taps that constantly record packet traffic. Fi-
nally, by buffering data at the client and being able to redi-
rect across a WAN, ours is the only solution that handles
catastrophic failures.

Figure 3 provides a system call level view of host interac-
tions for the different implicit redirection cases. In Figure 3,
a lowercase letter denotes a request, an uppercase letter de-
notes a reply, a rounded box represents EOP processing that
is transparent to the client, and 0 indicates a null parameter.
In addition, we use ��� to denote the fault tolerant list op-
tion, � � to denote the heartbeat option, and ��� to denote
the checkpointing option. The � � option is shaded in the
figure. If used, then the jagged line in the figure represents
both process failures and network partitioning. Otherwise,
it only represents process failures.

Figure 3(a) gives the case where the server is not us-

3

ing the checkpoint option and the error is detected during
a send system call at the client. Server 1 must set the ���
socket option before accepting the connection. If the server
does not, the connection will be vulnerable to errors until
the option is set. The server can also set the ��� socket
option at any time in order to update the list of alternate
servers. This list, along with all other option settings, is
passed to the client during the EOP handshake (see Sec-
tion 3). The client-side EOP is notified of a communication
channel error via TCP error codes or the heartbeat option. It
then picks an alternate server from the failover list, creates a
new connection to this server, forwards the previous request

� to Server 2, and then returns control to the client. Normal
communication ensues.

Figure 3(b) only differs from Figure 3(a) in that check-
pointing is used. Server 1 updates the checkpointed state as
needed. This state usually reflects application layer state as-
sociated with serving requests on the communication chan-
nel, such as a file name and offset. The checkpointed state
is buffered at the client as part of the session layer commu-
nication state and overwritten on each update. The error de-
tection and redirection at the client occur as before, except
that the checkpointed data is forwarded to Server 2 arriv-
ing in an accept st parameter. The client again forwards
the last request. Server 2 sends a reply to this request and
continues to serve any additional requests.

Figures 3(c) and 3(d) are the recv error counterparts
of Figures 3(a) and 3(b), respectively. While the client
is blocked in the recv system call, EOP detects the er-
ror, creates a communication channel to an alternate server,
forwards the previous request, forwards any checkpointed
data, and then continues to wait for a reply. The client has
the capability to set an EOP socket option that will return
an EREDO error instead of automatically buffering and for-
warding the previous request at failover. This allows for
more control when the client is EOP-aware.

The servers need to carefully handle data synchroniza-
tion in persistent storage with implicit redirection. For ex-
ample, in Figure 3(d) Server 1 could have accomplished
various levels of processing on the client’s request before
failing. If this processing entails updating a persistent store,
Server 2 might repeat updates to this store causing data
corruption. If such updates are possible, then the servers
could commit updates after the request/response transac-
tions completes, have a rollback mechanism invoked when
servers fail, or have a 3rd party mechanism to record the
partial processing done that Server 2 can query.

2.3 Usage

RedSocks are designed to be highly flexible and adapt to
a multitude of uses, so our description of their usage should
be viewed as a guideline and not a hard and fast rule. Trans-

ns = accept _st(s,cpState);

s=socket(SOCK_EOP_STREAM);

HB = setHB(); CP = setCP(); FT = setFT();
setsockopt(s,EOP,EOP_HB,HB);
setsockopt(s,EOP,EOP_CP,CP);
setsockopt(s,EOP,EOP_FT,FT);

if(process(cpState))
send(ns,response)

begin loop
recv(ns,request);
response = process(request);
if(cpUpdateNeeded())

setsockopt(ns,EOP,EOP_CP,CP);
 send(ns,response);
end loop

CP = newCP();

(a) Server

s = socket(SOCK_EOP_STREAM);

begin loop

send(s,request);

recv(s,response);
end loop

(b) Client

Figure 4. RedSocks Sample Psuedo-Code for
Implicit Redirection.

parency is a very important aspect of usability in this area of
research. While we show client-aware usage of RedSocks,
we actually provide various levels of transparency, includ-
ing full client transparency, and discuss this in detail in Sec-
tion 2.4.

For implicit redirection event generation, the server
conditions the socket with the system call setsock-
opt(level,option,value). We created a new level,
the EOP level, and a set of EOP options for use with this
system call. The options are EOP HB, EOP FTLIST, and
EOP CP. The EOP socket options are used to turn on a
heartbeat mechanism used to expose network partition er-
rors, to send a list of alternate servers the client uses dur-
ing failover, and to allow a server to checkpoint application
layer state that is transferred to an alternate server if failover
occurs. These options were described in Section 2.2 and
there implementation is discussed in Section 3.

Figure 4 gives client/server psuedo-code for using Red-
Socks failover capability. Bold font indicates RedSocks
specific changes. The server sets all necessary EOP op-
tions that are transferred to the client at send time or via
the EOP handshake. The server actions parallel those of a
server handling explicit redirection, except that instead of

4

knowing exactly when to send application state, the server
sends checkpointing state when necessary. If desired, the
client can set an option to expose failover (not shown in the
Figure 4). If it does, then the client must handle the EREDO
error in Figure 4(b).

2.4 Transparency

Total client-side transparency is achievable by providing
a simple wrapper to the BSD Socket API. This might be
needed for enhancing legacy applications when it cannot
be guaranteed that server interactions will not generate an
EREDO error. For a system using BSD Sockets, a wrap-
per solution would need to intercept all recv, send, or
socket system calls. The library would need to buffer all
messages sent by the client between receives and be able
to resend those messages in the case of an EREDO error.
Also, the library needs to substitute SOCK EOP STREAM
for SOCK STREAM at socket creation. All other interac-
tions and errors are passed through. Such a library provides
full transparency to the client.

Not all applications are suited for complete client-side
transparency. For example clients may want to be informed
of redirection events in order to enforce different security
polices or to adapt their requests for performance reasons.
RedSocks includes a socket option that can expose redi-
rection by returning an EREDIR error code whenever redi-
rection occurs, whether explicit or implicit. EREDO takes
precedence over EREDIR as it also indicates that a client
action is required.

A proxy solution can also be used to transparently pro-
vide RedSocks functionality for a wide set of clients or
server systems. For example, a web proxy can participate
in redirections with any enabled server in the Internet for
web content retrieval while maintaining standard communi-
cations with its clients.

3 Implementation

There are several different, complimentary strategies for
implementing RedSocks. You can use a library, proxy, ses-

eop_recv

TCP

eop_redirect

udp_sendtcp_recv

eop_send

tcp_connect
tcp_send udp_recv

redirectrecv, read send, write
APPLICATION

 EOP

UDP

Figure 5. The architecture for EOP and Red-
Socks

sion layer solution, or RedSocks can be directly incorpo-
rated into the application. In our implementation, we chose
a session layer solution and include a TCP option to dis-
cover the protocol, so that it can be deployed incremen-
tally. Thus, machines can begin aggressively incorporating
RedSocks and its functionality can be incrementally used
as peers follow suit. Protocol discovery is not an issue
for new applications which directly incorporate the proto-
col and know a priori that all participants incorporate it as
well – HTTP is an example of this situation. Library solu-
tions will need to implement a protocol discovery mecha-
nism like the one presented in [13].

3.1 Environment

We built our fault tolerant sockets in the Linux 2.4.16
kernel, which implements BSD sockets that conform to ver-
sion 4.4BSD. All code is written in C and the kernel was
compiled with egcs-2.91.66.

3.2 Architecture

The fault tolerant socket architecture, shown in Figure 5,
is an extension of the architecture we used for RedSocks [5].
We discuss the EOP and transport layer changes necessary
to implement our fault tolerant sockets.

104966432160

SLENIP ADDRESSPORT OPCODE HLEN

Figure 6. The new EOP Header

ECP_OPT_FTLIST Size IP Port IP Port ...
0 32 64

320

TYPE DATA

(a) General Format:

(b) Option format for Backup Server List:

Variable

Figure 7. EOP option formats

3.2.1 Endpoint Operation Protocol

We modified the EOP header to allow options. We use the
header options to send the backup server list, heartbeat rate,
and checkpointed application data necessary for our fault
tolerant socket implementation. The new EOP header is
given in Figure 6. The additional field hlen is a 8-bit field
that provides the length of the EOP header plus the options.
Figure 7 illustrates the general EOP option format and the
specific format for sending a backup server list.

5

Op = Normal (response)

EOP Header Payload

CP
Data

Op = Normal (response)

EOP Header Payload

CP
Data

A B C
R

ed
ir

ec
tio

n
N

or
m

al
 O

pe
ra

tio
n

E
rr

or Error Feedback

EOP Header

Op = Normal (request)
FAILED

D
et

ec
tio

n

TCP 3−Way Connection

EOP 2−Way Handshake

Payload

Op = Normal CP
Data

Op = Normal (request)

Payload

O
pe

ra
tio

n
N

or
m

al

EOP Header

EOP Header

Figure 8. Timeline for EOP packet flow for im-
plicit redirection with a response and appli-
cation state

Implicit Redirection Time Flow Diagram Figure 8
gives the time flow diagram for an implicit redirection event
that includes checkpointed state. � periodically check-
points its application data during normal communication
with � . When � fails, EOP receives communication chan-
nel feedback indicating an error which triggers redirection.
First, EOP chooses an alternate server from the list provided
at connection time1, connects to it, provides the check-
pointed data during the 2-way EOP handshake, and for-
wards the previous request. Communication between � and

� proceeds normally.

Endpoint Failure Detection On the client, the failure of
the server-side endpoint is only detectable through errors
reported by the transport layer. The EOP layer must cap-
ture all relevant error codes to know when to invoke the
failover mechanism. The failure mechanism is essentially
the RedSocks redirect function called by error condition
handling code on the client instead of a specific “redirect”
EOP header sent by the server and using a backup server list
instead of a target in the EOP header.

Table 1 depicts five different failure scenarios. It pro-
vides the type of error that is reported to the application,
TCP’s response, and the fault tolerant action that should be
taken for both process and machine failure for each sce-
nario. For network partition failures that separate interme-
diate routers, we rely on feedback from ICMP messages.

Scenario I describes the errors that can occur during the
first connection attempt by the client. If an error occurs
at this time, there is no failover action to be taken by the
client. In other words, fault tolerance does not apply until a
connection is established.

Scenario II, which represents failures that occur during

1The use of the option that provides a alternate server list is not shown
in the diagram

a client send, has two subclasses defined for process fail-
ure. When the server process fails, the server-side kernel
responds with a partial close of its end of the socket. The
client still sends its message and the receipt of that message
generates a TCP reset, denoted RST in the table, from the
server-side TCP. If the RST arrives before the client calls
recv, then we get case (a) in the table: the error is detected
and the failover operation should be invoked. If the RST
arrives after the client calls recv, then the client can only
detect the sending of FIN which causes the recv call to re-
turn with zero bytes read. From the point-of-view of the
client, this seems like a normal EOF occurring in the socket
stream. To distinguish between these cases, we added an
ENDTOKEN that the server sends, in the EOP header, on a
normal close. If client receives a FIN but no ENDTOKEN,
then the client knows it encountered a failure and should fail
over. When the server-side machine fails during scenario
II, the client encounters an extremely long ACK timeout 2.
This delay is not transparent to the client and another solu-
tion is required to detect this condition. Our solution is have
EOP periodically send heartbeat messages.

In scenario III, process failures are immediately detected
and the client fails over. With machine failure, scenario III
poses a more serious problem. No error conditions are gen-
erated and the client will block on the recv system call in-
definitely. Again, we require a heartbeat mechanism to han-
dle this situation.

Last, scenario IV is the connection that occurs during the
failover operation. When errors are detected the client tries
the next server in the backup server list. If every server on
the list is down, then the socket terminates and reports the
error to the client.

3.3 Deployability

We enhanced our fault tolerant socket implementation by
adding a negotiation mechanism that allows both end-points
to discover socket functionality. At connection-time, each
end-point checks its peer and discovers whether EOP is sup-
ported and adjusts accordingly. We accomplished this by
adding a new TCP option that sends the “conditioning” of
the socket during the TCP 3-way handshake needed to form
a connection. If no option arrives during the handshake,
then the remote end is not enabled with our enhanced socket
features. Since TCP ignores all unknown options, there is
no negative impact in sending this option to systems that do
not support it.

Figure 9 shows the format for this option. The kind field
identifies the option. The length field equals the total length
of the option, which is four bytes in this case. The last two
bytes comprise a bitmask indicating what features are sup-

2Twenty three minutes for our Linux 2.4.16 test

6

PROCESS FAILURE MACHINE FAILURE

FAILURE FEEDBACK FEEDBACK

SCENARIO ERROR TYPE TCP RESPONSE ACTION ERROR TYPE TCP RESPONSE ACTION

I. Initial connect: refused server: connect: no client: SYN
Connection connection RST none route to host 3 times none
IIa. Send recv: server: FIN and

broken pipe RST before recv failover recv: no ACK Timeout (heartbeats)
IIb. Send recv: returns 0 server: FIN and no end token?, route to host = 23 minutes failover

no error RST after recv failover
III. Recv recv: connection both (heartbeats)
(partial data) reset by peer sent RST failover none none failover
IV. Failover
Connection same as I same as I failover same as I same as I failover

Table 1. TCP error messages and responses for given server failure scenarios with desired fault
tolerant socket behavior.

LengthKind

1 byte1 byte 2 bytes

Unused E

Figure 9. A new TCP option format for socket
functionality discovery.

ported. At this time, we only have one feature — EOP en-
abled (E).

4 Experiments

RedSocks provide the capability to recover from com-
munication channel failures. As failures are the exception
and not the rule, the performance of normal communication
transfers are extremely important. When a failure does oc-
cur, however, a slow recovery may be as unacceptable as the
error itself. As we will show next, RedSocks exhibits low
overhead in both cases. Last, we provide a proof-of-concept
experiment by incorporating RedSocks into the Apache web
server.

4.1 Environment

We ran our experiments on different combinations of five
400Mhz dual-processor Pentium III machines where each
has 256MB of RAM, two 18GB hard drives, and a 100Mbps
Ethernet network card. These machines are connected via
a 100Mbps hub. Each machine ran a RedSocks-enhanced
Linux 2.4.16 kernel.

4.2 Fault Tolerance Overhead

We first measured the overhead of using our fault tolerant
sockets when no failure occurs using two of the machines

described in Section 4.1. We measured the normal com-
munication exchange between our custom client/server ap-
plications with our heartbeat mechanism enabled for differ-
ent sizes of data to checkpoint. The checkpointing scheme
we employ is to checkpoint application state before every
send system call. This simulates the situation where ev-
ery request is for a file to download which typically oc-
curs in ftp and web servers. We show the client latency for
reply/request exhanges, varying in size from 100 bytes to
32K, in Figure 10(a). To serve as a basis for comparison, we
include the results for communication with heartbeats and
checkpointing turned off; the line labeled “Normal” repre-
sents these results.

As Figure 10(a) clearly shows, heartbeats and check-
pointing add minimal overhead. A careful inspection of the
graph reveals that the “Normal” line skims beneath the rest
of the cases employing heartbeats and checkpointing.

For our failover overhead measurements, we use three of
the 400Mhz dual-processor Pentium III machines described
in Section 4.1. The server provides the client with a list
of alternate servers to failover to when the client connects
via the EOP handshake. At some random point in the com-
munication with the client, the server aborts the connection.
When the client-side EOP detects the failure, it selects an al-
ternate server from the failover list provided by the original
server and opens a connection to it. During the EOP hand-
shake, the client-side EOP provides the alternate server-side
EOP with the checkpointed data, the number of bytes read
since the checkpointed data arrived, and any data leftover in
the client’s send buffer. This information is passed up to the
alternate server via the accept st system call (see Sec-
tion 2.3). The alternate server parses this data and continues
to server the request. The entire transaction is transparent to
the client.

Figure 10(b) shows our results for this scenario for dif-
ferent simulated file sizes and checkpoint data size. Again,

7

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5000 10000 15000 20000 25000 30000

D
ur

at
io

n
in

 S
ec

on
ds

Request and Response Size in KBs

HeartBeat
HeartBeat, Checkpoint=50b

HeartBeat, Checkpoint=100b
HeartBeat, Checkpoint=150b

Normal

(a) Communication Overhead

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5000 10000 15000 20000 25000 30000

D
ur

at
io

n
in

 S
ec

on
ds

Request and Response Size in KBs

Failover(100), Checkpoint=50b
Failover(5), Checkpoint=50b

Failover(5), Checkpoint=150b
Normal

(b) Failover

Figure 10. Failover measurements

we include the results of communication without failure,
heartbeats or checkpointing for comparison; these results
are represented by the line labeled “Normal” in the graph.
We wanted to study the impact of failure on both large and
small files. To simulate a large file transfer, we performed
100 hundred send/recv exhanges of the sizes indicated
by the x-axis of Figure 10(b). Simarly, we simulated a small
file with 5 such exchanges. For a large files, the time asso-
ciated with failover is amortized across 100 send/recv
exhanges and thus exhibits less overhead than that experi-
enced by small files.

4.3 Fault Tolerant Apache

We present our experiment setup in Figure 11. Each
client simulates multiple browsers by forking children that
connect to our modified Apache server and issue a fixed se-
quence of requests for a file. These requests are idempotent
HTTP GET operations for a 2MB file. In this experiment,

C1

C2

S1

S2

S3

50% 50%

Figure 11. The Experimental Setup

Figure 12. Server Connection Load Across a
Server Failure

each client forked 100 children. When each of C1’s chil-
dren initially connect to S1, they receive a permutation of�����������
	 as their backup list. In this experiment, C2
simply generates load on S3. C1 initially sends its requests
to S1 until S1 fails, when 50% of C1’s active connections
fail over to S2 while the other 50% fail over to S3. The
servers sample the number of open connections they are ser-
vicing every second. Our goal here was to demonstrate the
feasibility and correctness of our fault tolerant socket im-
plementation so we do not address the redirection of new
calls to connect by the client application. Therefore, after
S1 fails, C1’s subsequent calls to connect fail.

Modifying Apache to support our fault tolerant sockets
required only two trivial changes. First, we added code to
parse a backup server list from a configuration file and con-
vert that list into an array of sock addr in structs. Second,
we added a call to setsockopt to associate a permutation of
the backup list with each connection. These changes re-
quired only 25 lines of code. Clients that use fault toler-
ant sockets to communicate with our modified Apache were
then able to recover from communication failures of idem-
potent HTTP requests, simply by reissuing the request.

We ran our experiment for 100 seconds and killed
Apache on S1 after 29 s had elapsed. Figure 12 depicts
the number of concurrent connections open on each server
during the experiment. Until S1 failed, S1 and S3 were
servicing between 90 and 100 connection, while S2 was

8

idle. After S1 failed, half of its active connections fail over
to S3, whose connection load jumps to approximately 135
connections, and half to S2. Since C1’s subsequent new
connections fail after S1, as explained above, both S2 and
S3 return to their prior connection loads after those connec-
tions active when S1 failed are closed.

5 Related Work

Fault Tolerant RedSocks is the only application-
independent solution that handles catastrophic failures. We
briefly describe application-independent approaches that
handle other server-side failures and place our work within
the context of these approaches.

The Stream Control Transport Protocol [12] proposes the
notion of multi-homing, in which an end-point can be asso-
ciated with multiple IP-addresses. Upon a network failure,
the protocol arranges for data to be sent over to an alternate
network path to the same server endpoint. Our mechanism
also handles network failure by allowing failover to an al-
ternate network path between the same server endpoint or a
different one.

HydraNet-FT [10] uses a redirector for detecting fail-
ures and re-mapping an existing connection to a secondary
server. The redirector is aware of all replicas, and redirects
each client request to a primary and all its replicas. The
system, thus, uses a primary-backup scheme. Our approach
does not require dedicated replicas.

Alvisi et. al [1] describe a fault tolerant TCP (FT-TCP)
in which a failed TCP connection can be restored to a spe-
cific communication state after a server recovers from fail-
ure. FT-TCP is implemented by a wrapper that checkpoints
connection state and data at a separate logger. During the
recovery process, the wrapper and the loggers interact to
bring the application to a specific state. Our recovery pro-
cess does not require servers to replay all previous commu-
nication events to rebuild communication and application
state.

Snoeren et. al [11] propose a connection failover mech-
anism to provide fault tolerance for a collection of Inter-
net servers. In this approach, each connection is associated
with a set of LAN-connected servers. The servers periodi-
cally synchronize their connection states. Upon failure, the
servers in the group contact the client, which then selects
one of the servers to resume connection. Because the server
resumes communication, the solution is not compatible with
NATs or Firewalls. Our approach differs from [11] in that
our notion of connection failover is client-centric. Once a
connection fails, a client endpoint determines (through a
server list) the server to which it should re-connect. This
makes our approach compatible with both NATs and fire-
walls.

6 Conclusion

Fault tolerant RedSocks bring reliability to Internet Ap-
plications. Ours is the first, general-purpose solution that
handles all server-side failures, including catastrophic fail-
ures, in a scalable manner. In future work, we plan to in-
corporate connection redirection, instream redirection, and
fault tolerance to provide a single solution to Internet appli-
cation scalability and reliability requirements.

References

[1] L. Alvisi, T.C. Bressoud, A. El-Khashab, K. Marzullo,
and D. Zagorodnov. Wrapping server-side TCP to
mask connection failures. In the Proceedings of IEEE
INFOCOM 2001, pages 329–338, Anchorage, AK,
USA, April 2001.

[2] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrat-
ing user-perceived quality into web server design. In
Proceedings of the Ninth International World Wide
Web Conference, volume 33(1–6) of Computer Net-
works, pages 1–16, Amsterdam, The Netherlands, 15–
19 May 2000.

[3] T. Brisco. DNS support for load balancing. RFC 1794,
Rutgers University, April 1995.

[4] Scaling the Internet web servers. http:
//www.cisco.com/warp/public/751/
lodir/scale.wp.htm, 1997.

[5] M. Haungs, R. Pandey, E. Barr, and J. F. Barnes. A
fast connection-time redirection mechanism for inter-
net application scalability. In International Confer-
ence on High Performance Computing, page TBA,
Bangalore, India, December 2002.

[6] Michael Haungs. Providing network programming
primitives for internet application construction. Tech-
nical Report PhD Dissertation, University of Califor-
nia, Davis, September 2002.

[7] K. Li and B. Moon. Distributed cooperative apache
web server. In In Proceedings of the 10th International
World Wide Web Conference, pages 555–564, Hong
Kong, May 2001. ACM Press.

[8] M. Luo and C. Yang. Constructing zero-loss web ser-
vices. In IEEE Infocom 2001, Anchorage, Alaska,
April 2001. IEEE.

[9] Michael Reene. The customer expectation gap. 2002
Enterpulse Survey, www.enterpulse.com.

9

[10] G. Shenoy, S.K. Satapati, and R. Bettati. Hydranet-
ft: Network support for dependable services. In Pro-
ceedings of the 20th IEEE International Conference
on Distributed Computing System, pages 699–706,
Taipai, April 2000. IEEE.

[11] A. Snoeren, D. Andersen, and H. Balakrishnan. Fine-
grained failover using connection migration. In 3rd
USENIX Symposium on Internet Technologies and
Systems (USITS ’01), pages 221–232, San Francisco,
CA, March 2001.

[12] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control Trans-
mission Protoco. IETF, rfc 2960 edition, Oct 2001.
http://www.ietf.org/rfc/rfc2960.txt.

[13] V.C. Zandy and B.P. Miller. Reliable sockets.
http://citeseer.nj.nec.com/zandy01reliable.html.

10

