
Capturing and Exploiting IDE Interactions

Zhongxian Gu† Drew Schleck† Earl T. Barr£ Zhendong Su†

†Department of Computer Science
University of California, Davis

{zgu, dtschleck, su}@ucdavis.edu

£Department of Computer Science
University College London

e.barr@ucl.ac.uk

Abstract
Integrated development environments (IDEs) dominate the
production and maintenance of software. Developers interact
intensively with their IDEs while working. These interactions
reflect a developer’s thought process and work habits. By
capturing and exploiting comprehensive, fine-grained IDE
interactions, we can build intelligent IDEs that improve pro-
grammer productivity. This next generation of IDEs will
incorporate a general framework to capture and exploit IDE
interactions, and create an ecosystem of developer-aware ap-
plications and plugins. IDE++ realizes this framework on top
of the popular Eclipse IDE and can be downloaded from the
Eclipse marketplace. To demonstrate IDE++’s comprehen-
sive and granular capture of interactions, we capture, then
faithfully replay, a developer’s IDE actions on six nontrivial
programming tasks. We built four applications upon IDE++
to illustrate 1) the need for capturing comprehensive, fine-
grained IDE interactions, and 2) the promise of developer-
aware IDEs.

Categories and Subject Descriptors: D.2.3 [SWE]: Coding
Tools and Techniques

General Terms: Human Factors, Languages, Measurement

Keywords: User-monitoring, integrated development envi-
ronment

1. Introduction
Development and maintenance dominate the cost of soft-
ware [2]. 97% of .NET developers use Microsoft Visual Stu-
dio and 73% of Java developers use Eclipse-based IDEs [12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Onward! 2014, October 20–24, 2014, Portland, OR, USA.
Copyright © 2014 ACM 978-1-4503-3210-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661136.2661144

Thus, increasing the utility and power of IDEs will improve
programmer productivity and reduce the cost of software. In-
teractions between a developer and her IDE capture how the
developer writes a piece of code and reflect her thought pro-
cess and work habits. When we monitor a programmer’s IDE
interactions, we can look for patterns in the interaction stream
that indicate she needs help and provide instant assistance. If
we detect that a developer is unsure about which API to use,
we can recommend an API and show relevant examples. An
IDE can also adapt itself to a programmer’s work habits: if
it detects that a developer habitually runs test cases after an
editing session, it could run relevant tests automatically.

We believe the key to building the next generation of IDEs
is to transform IDEs from being order-takers into intelligent,
user-aware programs that monitor and reason about how
their users interact with them, like the original conception
and underlying technology, not the unfortunate realization,
of Office Assistant in Microsoft Office [13]. We envision
establishing an ecosystem of IDE applications and extensions
that exploit this awareness to dynamically personalize their
interface, to teach their developers how to use them more
effectively, to help them follow best practices, and to point
out features that are likely to be relevant to a developer’s
current task.

Developer-aware IDE Applications An ecosystem of
behavior-aware IDE applications will benefit the users of
IDEs, those who study developers and software processes,
and IDE developers. Programmers are often confronted with
unexpected, repetitive tasks, like conflict resolution during
version control or protocol updates after an API change.
A behavior-aware application could identify these cases
and suggest macros. Developer-aware navigation could in-
fer landmarks from the developer’s, or her colleague’s, be-
havior, such as frequently returning to a particular class
or method, then speed subsequent navigation by jumping
to those landmarks [6]. Advocates of the quantified-self
movement claim that one can improve oneself through self-
study [31]. Developer-aware IDEs will allow developers to
discover that conditions under which they, personally, are

Version History Commits

time

Unobserved

File Saves to Disk

Buffer Writes in Memory

Observed

Figure 1: IDE++ captures what is currently unobserved.

likely to introduce bugs, perhaps right after they return from
a coffee break. An experienced programmer’s interaction log
can teach a novice how best to work with an API, refactor a
method, fix a bug, or debug a race condition. When editing
an unfamiliar file, a programmer may wish to know which
files other developers who edited that file had also opened
and which methods had spent the most time on screen. Fi-
nally, IDE developers themselves can examine interaction
logs to learn which features users actually use to more rapidly
improve their IDE’s UI.

Capturing currently unobserved IDE interactions will also
provide empirical software engineering a rich, new source of
data to mine. Interaction logs, suitably sanitized to avoid a
Hawthorne effect [28], will allow researchers to investigate
questions such as “How do the interaction histories of experi-
enced programmers differ from those of novices?” and “Are
there correlations between IDE interactions and bug introduc-
tion or cost overruns?”. For instance, “Are developers more
likely to introduce bugs when interrupted?” where IDE++
could allow a researcher to define an interrupt to be a large,
relative to the median, pause between edits. Consider Fig-
ure 1. At the base, it shows commits to a version control
history, whose mining, due to the increasing importance of
open source and its adoption of version control, has trans-
formed empirical software engineering since 2000. Above we
see a developer’s local file writes; and above that the devel-
oper’s buffers writes. Both of these are currently unobserved;
IDE++ allows their capture. In short, IDE++ and a cohort of
cooperative developers willing to share their interactions will
give researchers new purchase on existing problems [11] and
open the door to pose and answer new questions.

Capturing IDE Interactions While our work is the first
to advocate the systematic monitoring of all kinds of IDE
interactions, prior efforts exist that focus on monitoring a
subset of interactions [22, 26, 32, 36]. Some behavior-aware

Figure 2: To support developer-aware applications, IDE++
captures and republishes interactions between a developer
and an IDE.

applications also already exist. The Mylyn Monitor, proposed
by Kersten and Murphy, intercepts programmer UI and com-
mand interactions to track Eclipse’s layout and dynamically
reconfigure it to support task-focused workflows [16]. The
Mylyn Monitor focuses on task-related interactions, such
as launches of and switches between views, (i.e. GUI win-
dows in Eclipse). Like other developer-aware applications,
the Mylyn Monitor does not consistently, comprehensively
capture fine-grained events, like edits at the granularity of
keystrokes or selections in different contexts. In contrast, we
advocate and realize the comprehensive and fine-grained cap-
ture of IDE interactions to make it easy to build unanticipated
developer-aware applications.

Of course, a developer would describe her interaction
with an IDE at a fairly high level of abstraction relative to
the underlying sequence of raw, low-level, hardware events.
For instance, developers might describe the IDE interactions
of a coding session as consisting of a sequence of editing,
browsing, testing, and debugging tasks. The appropriate
level of abstraction will vary with the development task and
technology changes. It is for this reason that we advocate
fine-grained interaction capture: we do wish to preclude any
conceivable developer-aware IDE application. This work
focuses on interaction capture, setting the stage for, but
largely leaving to future work, the task of interpreting and
exploiting these interactions. Of course, IDE interactions
cannot support arbitrary inferences. When a huge gap occurs
between two user commands, we cannot infer why that gap
occurred, nor why a developer chose to accomplish a task in
a particular order. In short, we do not capture coffee runs.

We have developed IDE++ on top of Eclipse. It consists
of an infrastructure that monitors fine-grained programmer
interactions in Eclipse and tool support to write custom,
developer-aware applications. IDE++’s architecture is publish
and subscribe, as Figure 2 shows. IDE++ monitors and
extracts IDE interactions, then publishes them to registered
applications.

We developed four applications — DevTime, Sage, Proc-
tor and Localizer — to illustrate the promise of an ecosystem
of developer-aware application built on IDE++ and the neces-
sity of capturing comprehensive, fine-grained interactions.

DevTime summarizes all of a developer’s IDE interactions
and faciliates introspective improvement of one’s use of
an IDE; its utility rests on comprehensive event capture.

Sage teaches novices how to use Eclipse’s built-in features
to be more productive; the opportunity to use some of
these features can only be detected by fine-grained event
capture, such as of the keystrokes that comprise manual
commenting.

Proctor helps to identify which methods programmers
should consider testing after an editing session; it col-
lates events from the test UI and editor and demonstrates
the need for comprehensive capture.

Localizer uses fine-grained code edits to help programmers
determine where their unit test cases fail.

This paper makes the following main contributions:

• We advocate the systematic capture and utilization of IDE
interactions as the basis of a new class of developer-aware
IDE applications;

• We present the IDE++ monitoring infrastructure, built for
Eclipse, that comprehensively captures and republishes
fine-grained programmer interactions; and

• To demonstrate the promise of the ecosystem of developer-
aware IDE applications that IDE++ makes possible, we
built four applications that require and exploit IDE++’s
comprehensive, fine-grained IDE interactions.

The early feedback on IDE++ has been positive and
is evidence for its potential for supporting useful cus-
tomized applications. We have released IDE++ to the
Eclipse marketplace. Tutorials and downloads are avail-
able at http://marketplace.eclipse.org/content/
ide#.UzGgj1FdV3c.

The rest of the paper is structured as follows. Section 2
presents Sage, an application whose intuitive utility illustrates
the promise of the developer-aware applications that IDE++
makes possible. Section 3 specifies which interactions we
capture and the methodology used to identify them. Next,
Section 4 describes the design and implementation of IDE++.
In general, it is difficult for one person to flawlessly mimic
another. To demonstrate that IDE++’s interaction capture
is comprehensive and fine-grained, Section 4 shows that
one programmer is able to fully replay the IDE session
of another programmer, then illustrates the ease of writing
applications in IDE++. Finally, Section 5 discuss related work
and Section 6 concludes.

2. Illustrative Example
An IDE is a complicated program, with a lengthy learning
curve [17]. Novice IDE users are often unaware of short-
cuts [27]. Even programmers who have mastered an IDE may
use their IDE inefficiently. For example, a programmer who
does not know that Eclipse’s Organize-Import feature (hotkey:

Figure 3: Sage records how often a programmer could have
used a built-in feature, but did not.

Shift+Ctrl+O) automatically inserts import statements, must
manually type import statements. Although these features are
well documented, searching for and reading that documenta-
tion often distracts from a developer’s current task.

An efficient learning strategy is to have an expert who
looks over your shoulder and tells you how to accomplish
a task more efficiently. Sage acts as just such an expert. It
monitors a programmer’s IDE interactions and pops up a
tip showing the functionality that would have been faster.
For example, Sage pops up a tip teaching the user about the
Toggle-Comment feature (hotkey: Ctrl+/), if it detects that a
programmer is manually commenting several lines of code.
Sage focuses on hotkey usage; Spyglass also monitors an
IDE user, but focuses on code navigation tasks [33]. Sage
also records the number of times a user could have used a
feature but did not. A programmer who uses mouse clicks to
switch editors could examine its output in Figure 3 and see
that using Eclipse’s Backward and Forward commands might
be more efficient for him.

Sage is an example of applying a finite-state machine
(FSM) to the interaction stream for self-improvement. To
build it, we identified Eclipse features that beginners neglect,
manually discovered how to accomplish the task each of these
feature speeds up and replaces, then encoded that feature-
bypassing sequence of actions into an FSM. While Eclipse
is running, Sage continuously feeds the programmer’s inter-
actions into each supported feature’s automaton. When an
automaton reaches a final state, Sage displays the related tip
notification. Currently, Sage supports 11 features, shown in
Figure 3. These features are spread across different domains
such as editing, refactoring, and browsing; their use saves
keystrokes and can improve productivity

3. Design and Implementation of IDE++
We integrated IDE++ into Eclipse because it is the dominant
IDE for Java programmers. We first describe the methodology
we used to realize our goal of comprehensive and fine-grained
interaction capture in IDE++. We then describe IDE++’s

http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c
http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c

Component Views

General Bookmarks, Console, Error Log, Markers,
Navigator, Outline, Problems, Progress,
Project Explorer, Properties, Search,
Tasks, Templates

Development Editor, Call Hierarchy, Declaration, Hier-
archy, Javadoc, Package Explorer

Browsing Members, Packages, Projects, Types

Debug Breakpoints, Debug, Display, Expres-
sions, Memory, Modules, Registers, Vari-
ables

Testing Unit testing

Table 1: The components and their views of the default
configuration of Eclipse.

architecture, how its clients can subscribe to its events and
extend it to capture events from new plugins.

3.1 Methodology
Programmers interact with IDEs through GUI windows called
views. Every interaction is tied to a view. Components group
views with the same purpose. As an example, Table 1 lists
all the components, and their constituent views, in Eclipse’s
default configuration. Different views define disjoint sets
of interactions. Programmers can edit code in the editor
view, not a search view. A programmer interacts with an
IDE in one view at one time. He can switch to another
view by performing a special interaction view switch such
as opening the JUnit view or issuing the Previous-View
command. Sometimes view switching is implicit: running
a test case after editing a program switches the view from
editing to testing.

To ensure that IDE++ captures comprehensive and fine-
grained interactions, we first sought to identify all core
Eclipse JDT views, then, for each view, all interactions de-
fined by that view. In both cases, we systematically studied
the Eclipse GUI, its documentation, and, finally, its source
code. In particular, when seeking to identify all the inter-
actions in a view, we reasoned from first principles, asking
ourselves what interactions a particular view must have in
order to achieve the goal for which it was designed. We began
our search for Eclipse interaction with the GUI components
in Eclipse’s default configuration.

Take the editor view as an example. The most fine-grained
interactions we capture are file buffer changes: inserting or
removing one character in a file. Some fine-grained interac-
tions might construct a high level interaction. For example,
code changes also reflect language-specific semantics, such
as AST changes. For example, a sequence of insertions might

reduce to adding a field to a class. Our model captures these
high-level changes.

Eclipse’s JUnit framework provides support for running
tests inside of Eclipse. After systematically analyzing it as
described above, we determined it would be best to extend
their TestRunListener class. This notifies us of the user
starting and ending a JUnit test session, along with notifica-
tions each time a test case starts and finishes. Components
supported in Eclipse is a moving target. Currently, we support
all the views in default configuration for Java development.

Of course, we cannot know the set of IDE interactions
precisely, both because of differences among IDEs and
because, as technology advances, IDEs will acquire new
features that define new actions and views. Indeed, we
restricted IDE++ to Eclipse’s Java functionality to affirm the
concept of comprehensive, fine-grained IDE event capture.
Keeping pace with Eclipse for Java, let alone extending it to
other Eclipse personalities and to other IDEs, will require
substantial engineering effort. IDE++ is open source; if
enough people find it useful, we hope a community will
help maintain it. For this reason, we have tried to make sure it
easy to extend IDE++ to new plugins and views, as described
in Section 4.4.

3.2 The Architecture of IDE++
At its core, IDE++ realizes the publish and subscribe model
on two levels. In the context of Eclipse, its host IDE, IDE++ is
itself a subscriber that listens for events coming into the IDE
and the IDE’s responses to those events. It is with respect to
these events that IDE++ strives to be comprehensive and
fine-grained. IDE++ then republishes these events to the
ecosystem of user-aware applications that it enables; from the
perspective of its clients, IDE++ is a publisher to which they
subscribe. IDE++ collects IDE interactions in three ways: For
view switching, IDE++ extends Mylyn Monitor by refining
its capture of selections; to capture edits at the granularity
of keystrokes, IDE++ directly instruments the Eclipse editor;
for code completion and refactoring, it augments Eclipse’s
default interaction collection facilities.

The Mylyn Monitor, which focuses on supporting task-
oriented workflows, monitors all view-switch interactions
(exposed in IPartListener in Eclipse) and we directly
used their listener MonitorUi for this purpose. How-
ever, for user selection interactions, the Mylyn Monitor
publishes only one event for all kinds of selections. To
get fine-grained selection interactions, IDE++ refactored
the Mylyn Monitor’s MonitorUi by splitting its methods
into sets of methods. As an example, IDE++ specialized
the handleWorkbenchPartSelection method into three
methods: structuredSelection, textSelection, and
the otherSelection method, each handling different se-
lection content. When capturing an interaction, IDE++ also
extracts associated information, such as the name of an
opened view.

The most challenging interactions to capture are editing
interactions. While the Mylyn Monitor does capture edit-
ing events, it does not do so at the granularity we seek. We
could not find the programmer’s keystrokes in Mylyn’s edit
event and, for a long editing session without switching per-
spectives, Mylyn generated only a single edit event. Thus,
we turned to Eclipse’s Java editor. The Eclipse JDT plu-
gin manages Java editor events in a decentralized way: it
provides listeners in different modules to capture mixed of
fine- and coarse-grained change notifications. For example,
IElementChangedListener publishes AST changes and
IDocumentListener notifies file buffer changes.

IDE++ aims to provide more consistent, meaningful and
fine-grained change types including the low-level change’s to
the editor’s buffer and high-level language semantic changes
such as refactoring. To capture fine grained text editing inter-
actions, we implemented two listeners. First, we implemented
IFileBufferListener to publish the opening or closing
of a text file buffer. Once we know a text file buffer has been
opened, we attach an IDocumentListener to its backing
document to capture DocumentEvent instances. For each
change, a document event contains its offset, its length, and, if
it is an insertion, its text. Eclipse’s support for attaching a lis-
tener to refactoring interactions is poor. For instance, when a
user performs a copy or rename refactor operation, a refactor-
ing event is fired to RefactoringExecutionEvent listen-
ers. However, this event does not give enough information to
fully resolve the changes that will be performed. To solve this
problem, we built modules that participate in the refactoring
process to distinguish the changes that refactoring eventually
makes from its inputs.

Eclipse provides hooks to allow developers to register
interaction monitors; users need to implement the exposed
listeners. To monitor how users change a class in Java devel-
opment, IDE++ implements IElementChangedListener,
which publishes changes to a class, such as adding a field.
Unfortunately, some of these listeners do not compre-
hensively capture their entity’s interactions. For example,
IElementChangedListener does not publish the renam-
ing of a field. For some events, the monitoring process
in Eclipse is centralized: it provides one listener for all
the events in different views, which sometimes conflates
the events. CommandMonitor is an example; it monitors
all the command events from all the views. We refactored
CommandMonitor into a set of listeners, one for each view.
For example, we created DebugCommandListener to cap-
ture all commands in the debug view: resume, suspend, step
into, etc.

IDE++ extensively instruments Eclipse to intercept inter-
actions. Generally, instrumenting programs slows them down,
and often imposes an unacceptable performance penalty. Pro-
gramming is inherently interactive; it interleaves many tasks,
such as thinking, editing, and navigating. Thus, the instru-
mentation IDE++ adds is unusual in that it is confined to

1 2012-03-28 18:16:56,090|main|35|95|p
2 2012-03-28 18:16:56,650|main|35|96|u
3 2012-03-28 18:16:56,762|main|35|97|b
4 2012-03-28 18:17:01,002|main|36|97|1
5 2012-03-28 18:17:01,711|main|36|96|1
6 2012-03-28 18:17:01,961|main|35|96|r
7 2012-03-28 18:17:01,995|main|35|97|i
8 2012-03-28 18:17:02,137|main|35|98|v
9 2012-03-28 18:17:02,153|main|35|99|a

10 2012-03-28 18:17:02,165|main|35|100|t
11 2012-03-28 18:17:02,170|main|35|101|e
12 2012-03-28 18:17:04,172|main|28|Save

Figure 4: Sample interaction log recorded by IDE++

IO with a human. Humans are glacially slow compared to
computers; relative to human reaction time, which averages
190ms [35], IDE++’s overhead is negligible.

3.3 Interaction History
The syntax of a single interaction captured by IDE++ contains
four fields: time stamp, thread id, type, and content. The type
field, recorded as an integer, identifies an interaction, such as
a view-selection or a edit. Currently, IDE++ supports 44 kinds
of interactions, documented at http://marketplace.
eclipse.org/content/ide#.UzGgj1FdV3c. Some in-
teractions have associated content. For instance, an editing
interaction includes the characters that have been typed; these
characters are stored in the content field.

Figure 4 shows an example of interactions captured by
IDE++. Type 35 denotes keystroke and type 36 denotes a
Backspace keystroke. The numbers (95-101) after the type
information of the interactions record the offset of the edits in
the file. The characters that were typed follow the offset. The
last interaction (type 28) tells that the user performed “Save”
command. The sample log records the following actions
performed by a user: He begins to create a public field. Then
he decides to change it to private. So he removes “ub”, types
“rivate” and clicks “Save”.

IDE++ interaction logs grows linearly in the number
interactions between a programmer and her IDE. As noted
above, IDE++ captures these interactions on the very slow
path to a human. We exploit this fact to filter events online
that would otherwise be prohibitively expensive and relegated
to postprocessing. For this reason, IDE++ only republishes
events with a registered listener.

3.4 Subscribing to IDE++ Events
IDE++ supports both online and offline analysis of interaction
information. The online analysis is a prerequisite for build-
ing “smart” IDEs that know what a programmer is doing and
offer live assistance. It will form the basis of an ecosystem of
user-aware IDE applications. The offline analysis allows ret-
rospective analysis a programmer’s interactions. The IDE++

http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c
http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c

1 notifyAdded(IJavaElement element);
2 notifyCodeChanged(IJavaElement element);
3 notifyCopied(
4 IJavaElement element, IJavaElement from,
5 IJavaElement to
6);
7 notifyMoved(IJavaElement from, IJavaElement to);
8 notifyRemoved(IJavaElement element);
9 notifyRenamed(IJavaElement from, IJavaElement to

);
10 notifySignatureChanged(IJavaElement element);
11 notifySuperTypesChanged(IType type);

Figure 5: API methods in JavaModelListener.

infrastructure enables any plugin to subscribe to its interac-
tion information. Internally, IDE++ sets up monitors when
Eclipse launches and receives events while Eclipse remains
open. It provides a set of listener APIs to which applications
can subscribe to receive interactions.

Currently, IDE++ offers six listener interfaces. The
first listener, DebugBreakpointListener, captures break-
point interactions; DocumentChangesListener captures
changes in documents; JavaLaunchListener captures pro-
gram launch information; JavaModelListener captures
editing interactions; JUnitListener captures JUnit inter-
actions; and, the final listener, UserActivityListener,
captures UI and command interactions. Figure 5 shows the
API methods in JavaModelListener. Developers only
need to implement listeners that capture the interactions they
want. To lower the burden on developers, IDE++ provides
adapters with do-nothing implementations of the listener
interfaces. These adapters allow developers to focus on their
application’s logic instead of littering their code with irrele-
vant methods.

To persist a programmer’s interactions, IDE++ leverages
its own framework of listeners: The log file is produced
by a meta-listener that implements and registers with all of
IDE++’s listeners. This listener then echos incoming events
into the log file. There are two main concerns regarding log
files: 1) log files might become very large and 2) programmers
do not want sensitive information such as source code and
author information to leak to unauthorized applications. The
measures IDE++ takes to handle log size are addressed above
in Section 3.3. IDE++ is designed to support local IDE
plugins. Thus, IDE++ handles privacy concerns in the same
way Microsoft Excel does — viz. share nothing by default and
instead leave the management of the log files to the discretion
of the user. In addition, users can choose to hash the concrete
information such as the source code edits to prevent it from
being leaked.

To help developers build plugins, we have published doc-
umentation, tutorials and examples showing how to use the
IDE++ infrastructure at http://marketplace.eclipse.
org/content/ide#.UzGgj1FdV3c.

3.5 Extending IDE++
The set of IDE interactions is a moving target. New plugins
will introduce new interactions. IDE++ has an open design
that allows integration of new interactions easily. Integrating
a new interaction requires two steps: 1) extending the sub-
scriber to monitor the new plugin to get change notifications
and 2) adding a new listener in the publisher side to allow
clients to retrieve interactions. We illustrate the two steps
using the EGit plugin as an example.

To subscribe to change notifications from a new plugin,
we need to find out the listeners it provides. EGit provides
an IndexChangedListener that is notified when the Git
index changes. IDE++ subscribes to this listener to receive
notifications from EGit and then republishes them to the
IDE++ listeners.

The remaining step is to allow other applications to receive
the new interactions from the new publisher. First, we need to
parse a plugin’s notification object to extract its information.
For EGit, we retrieved the Repository object from the no-
tification. We then call the relevant notifyIndexChanged
method on the IDE++ listeners and pass the repository as
a parameter. Other applications can now implement the lis-
tener and register it with IDE++ to access to this piece of the
interaction stream.

The subscriber and publisher architecture makes monitor-
ing and exploiting interactions straightforward. Often, IDE++
needs only to subscribe to a plugin’s interactions then repub-
lish them without modification to other applications. When
this is not the case, a developer who is familiar with the plu-
gin should find it easy to export its interactions to IDE++.
Finally, extending a new plugin is a one time task that opens
the door to IDE++’s ecosystem of user-aware applications.

4. Evaluation
Our evaluation objective is two-fold: to demonstrate that
IDE++ comprehensively captures fine-grained IDE interac-
tions, and to show the promise of that information as the basis
of an ecosystem of user-aware IDE applications.

4.1 Comprehensiveness and Granularity
To be the basis of a vibrant ecosystem of user-aware ap-
plications, IDE++ must effectively realize the goal of com-
prehensive and fine-grained interaction capture. Here, we
present two experiments that measure the degree to which
we succeeded. The first experiment shows that we are able
to fully replay nontrivial sequences of IDE interaction from
IDE++’s interaction history. The second experiment quanti-
fies IDE++’s event capture against Mylyn Monitor.

4.2 IDE Interaction Replay
In this experiment, IDE++ records the actions of Programmer
A as he performs programming tasks. Then we show that,
given the same initial environment as A and using A’s
interaction log, programmer B can redo exactly what A did

http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c
http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c

Edit Browse Test Debug Total

Task Time (min) IDE++ Mylyn IDE++ Mylyn IDE++ Mylyn IDE++ Mylyn IDE++ Mylyn

RPNCalculator 32 1,367 12 98 98 25 2 39 28 1,529 140

C
onvertE

to
C

String 23 888 10 142 142 12 1 9 1 1,051 154
Repeat-Until 44 3,211 26 144 144 64 3 23 7 3,442 180
Array 94 8,233 47 246 246 81 3 24 13 8,584 309
Boundary 25 720 8 165 165 40 2 11 3 936 178
Every 40 3,020 25 228 228 5 1 3 1 3,256 255

Table 2: A comparison of the interactions captured by IDE++ and Mylyn Monitor.

Task Participant Time (min)

RPNCalculator Student A 21

C
onvertE

to
C

String Student A 15
Repeat-Until Student B 33
Array Student B 61
Boundary Student C 21
Every Student C 33

Table 3: Time used for participants to replay the interactions
for each task.

and produce the same output. We conducted this user-session
replay experiment to demonstrate how well we realized our
goal of achieving the systematic capture of maximally fine-
grained events. This experiment rests on the intuitive idea
that, if one can precisely replay an IDE interaction from an
IDE++ log, then we have indeed met our goal.

Table 2 lists the six programming tasks we used in this
experiment. The RPNCalculator task requires a program-
mer to write a reverse polish notation calculator and pro-
vide JUnit test cases to ensure correctness. An undergraduate
course in our department assigned programming tasks that
involved adding support for syntactic constructions to a ped-
agogical language E by translating them into C. The five
constructs were String, Repeat-Until, Array, Array Boundary
check, and Every, a loop construct similar to a foreach. One
of the authors completed these tasks while IDE++ recorded
his interactions. The second column records the time he used
to finish each task.

IDE++’s raw output is not easy for humans to read, so we
processed it to separate user actions from Eclipse’s responses
and to map file offsets into a line number and column.
Figure 6 shows postprocessed output. Participants in the
replay experiment simply follow the logged user actions1.

We invited three students to participate in the experiment.
All of them had moderate coding experience and were fa-
miliar with the Eclipse IDE. Each participant performed the
replay experiment for two of the six assignments in Table 2.
Table 3 shows the time taken to replay the interactions for

1 Automating replay is future work.

User Ac�on Eclipse Response

Open (Scanner.java)

Set focus on (Scanner.java)

Insert code at (12,5): gcprint()

Run command: Save

Select (TestEToC.java)

Run command: JUnit‐Run

Launch JUnitSession TestEToC

Start TestEToC.testFunc()

End TestEToC.testFunc (Success)

Figure 6: Sample natural language interaction sequence
diagram.

each programming task. We diffed their source code files
against the target files and confirmed that they match. To
make sure the entire process was replayed, we also compared
the logs produced by the participants with the author’s logs
and confirmed that the interactions recorded are the same
with the exception of the time stamps.

4.3 Mylyn Monitor Comparison
Like IDE++, Kersten’s and Murphy’s Mylyn Monitor cap-
tures IDE interactions; its focus is capturing those interactions
needed to understand and support task-oriented workflows.
In contrast, IDE++ seeks to be a general purpose framework
for a new class of user-aware IDE applications. Although
the two projects differ in focus, Mylyn Monitor is a mature,

well-engineered project. Thus, we use it as a baseline against
which to understand the detail of IDE++’s interaction capture.

To enable the comparison of interaction logs between
IDE++ and the Mylyn Monitor, we normalized both project’s
interactions into atomic actions performed by a user, such as
a mouse click. We grouped the actions into four categories:
editing, browsing, testing, and debugging; we then compared
the number of actions recorded for each category.

Table 2 shows the number of actions captured by both
monitors for each category. While Mylyn Monitor has been
extend to capture screen contents [5], it is clear that IDE++
captures far more editing interactions. This is because IDE++
captures all of the fine-grained interactions including cursor
movement, keystrokes, and related commands, while the
Mylyn Monitor records only coarse-grained file change
events and commands. Browsing actions include selecting
structured content and switching views. The Mylyn Monitor
was designed for this task; IDE++ also captures these actions
and more. For the testing category, the Mylyn Monitor records
only that the Run-Test command was performed, while IDE++
also includes which test cases have been run and their results
(success or failure). For debugging, IDE++ records when a
user enables, disables, or changes a breakpoint, the debugging
commands a user uses, such as Step-Into and Step-Over,
which variables he has inspected while his program was
paused, and the stack frames he selected. The Mylyn Monitor
records only the commands run and that a variable or stack
frame was selected, but no data about it.

4.4 Developer-aware IDE Applications
To demonstrate the necessity of comprehensive and fine-
grained interaction information and the promise of an ecosys-
tem of user-aware applications built on IDE++, we introduce,
in addition to Sage (introduced in Section 2), three IDE++
applications: DevTime, Proctor, and Localizer. These appli-
cations help programmers edit, test, and debug. Figure 11
in Section 4.5 shows the source code of a simple, yet mean-
ingful, application to illustrate how easy it is to write an
application using IDE++.

4.4.1 DevTime
After finishing a task, a programmer may want to review
what he did to track a project’s progress or file a daily
working report. Typically, he would review those changes in
his version control system (VCS). However, VCS history is a
coarse record of what he actually did: it does not reflect the
time he spent browsing code or running regression tests. If
he made several changes in a single location to the source
in his editor, VCS can capture only those changes actually
committed to its history. DevTime has two reports: a summary
of task performed by category, shown in Figure 7, and a
timeline visualization in Figure 8.

Figure 7: The Summary Report application shows a program-
mer how he has interacted with Eclipse.

Figure 8: IDE++ draws a timeline of a user’s interactions for
the most recent session.

Figure 9: Proctor tracks editing and testing interactions to
remind the user which methods have not been tested yet.

4.4.2 Proctor
A good software engineering practice is to test a method
while the method and changes made to it are still fresh in a
programmer’s mind. The longer the gap between editing and
testing, the harder it is for a programmer to find and fix a bug
he introduced. When shifting from composing code to testing,
a programmer must recall the methods he edited and whether

he already tested them to best direct his testing efforts. The
IDE will save him time when making this transition if it
tracked which methods have been edited and tested recently.

Proctor helps programmers build testing plans by tracking
which methods have been edited and tested recently. It
monitors the editing interactions to get the list of methods
that have been changed and JUnit test interactions to get the
list of run test cases. By scanning the source code of the
test methods, the Proctor knows which methods have been
tested and whether they passed the test or not. It organizes
the edited methods into three categories and presents them
to the programmer: methods that have not been tested yet,
methods that have been tested and passed, and methods that
have been tested but failed. Figure 9 shows example output.

4.4.3 Localizer
Bug localization is an active research area, comprising sta-
tistical models, code history, program slicing, etc. [14, 15,
20, 21, 37]. Many techniques apply sophisticated analysis to
an entire program. The IDE++ Localizer introduces a new
approach: localizing bugs by searching the recent editing
history. Programmers run regression test cases routinely to
ensure that recent edits have not adversely affected existing
functionality. When a test case fails, it is likely that a recent
edit caused the failure. Using this heuristic and the program’s
call graph, the IDE++ Localizer lists recently edited methods
that might have caused a JUnit test failure. Since this ap-
proach requires only recent editing history, it is light-weight
and provides live feedback.

Consider the example shown in Figure 10. A program-
mer changed both the sum and sayHello methods in
Calculator during the current session. When he ran the test
cases, testSum failed. Although both sum and sayHello
were changed, since the call graph of testSum shows that
only sum affects it, the Localizer tells the programmer that
sum is the candidate method that caused the failure.

Localizer illustrates the use of a particular kind of inter-
action; it monitors only the JUnit launch and editing inter-
actions, and is triggered by a test failure. First, it builds the
set of the methods called by the test method. Then it extracts
the set of methods edited during the recent sessions from
IDE++’s interaction history. The intersection of these two
sets forms the set of candidates. Finally, Localizer presents
these candidates to the programmer. Since the edits triggering
the error might not have occurred in the most recent session,
Localizer can search the edit history of previous sessions.
By default, Localizer searches the last three sessions. The
programmer can override this default.

4.5 Writing IDE++ Applications
Table 4 displays the lines of code (LOC) of the four applica-
tions we built. The third column lists the total LOC; second
column shows the LOC related to receiving and processing
IDE interactions from IDE++. DevTime retrieves interactions

LOC

Application Interaction Total

DevTime 20 972
Sage 278 2,123
Proctor 69 889
Localizer 130 874

Table 4: Line of code (LOC) of the four applications; the
Interaction column displays the LOC dedicated to receiving
and processing IDE interactions from IDE++; the different
between this column and the Total column is the application-
specific logic.

directly from IDE++ log files, so its LOC for interactions is
only 20. Because Sage monitors every available interaction
and parses the arguments to get information, it requires the
most logic to handle interactions. Additionally, it contains
many different automata that check for different patterns, ex-
plaining why it is much larger than the other three plugins.
Comparing the second and third columns, we see that de-
velopers need to write very little code to retrieve and utilize
interaction information from IDE++.

We use a simple, albeit real, example to illustrate how
easy it is to build an IDE++ application. Assume a de-
veloper wants to track the average running time of the
programs run during an Eclipse session. For this appli-
cation, a developer needs only implement and register
JavaLaunchListener to intercept program launch inter-
actions. In Figure 11, the developer puts the bulk of the
time-averaging logic in handleTerminated and stores the
results in runningAverages. Despite its brevity, the code
demonstrates a complete use of the IDE++ infrastructure.

5. Related Work
Many IDEs, Eclipse among them, support rudimentary user
monitoring [30]. They provide hooks that allow developers
to implement their own listeners. However, the support
for capturing interactions is ad hoc and cumbersome. For
example, Eclipse only partially captures UI interactions, since
it does not capture mouse actions; when a programmer issues
a command, Eclipse does not report whether the programmer
typed a hotkey or clicked a button in the tool bar or a menu.
In contrast, IDE++ comprehensively captures and republishes
IDE interactions in a standard, easily parsed format.

Code evolution dominates the software life cycle. Devel-
opers use a version control system (VCS) to track code evolu-
tion. To support collaborative development, VCS allows users
to write and commit code to a shared repository. IDE++ also
tracks code evolution, but at a finer granularity: we capture
every edit interaction, as the changes in an buffer between
two idle periods of at least one second. When a developer is

(a) Code change. (b) Call Graph of test case methods. (c) The Localizer result.

Figure 10: How Localizer works: (a) A programmer changes both sayHello and sum (marked gray in (b)). (b) testSum fails
when the test cases were run (marked red). (c) Localizer suggests that changes in sum might have caused the failure.

1 class RunningAverage {
2 int count;
3 double average;
4 RunningAverage(double a) {
5 count = 1; average = a;
6 }
7 }
8 JavaLaunchListener l = new JavaLaunchListener() {
9 private Map<IType, Long> launched =

10 new HashMap<IType, Long>();
11 private Map<IType, Long> runningAverages =
12 new HashMap<IType, RunningAverage>();
13 public void programLaunched(IType mainType) {
14 launched.put(
15 mainType, System.currentTimeMillis()
16);
17 }
18 public void programTerminated(IType mainType) {
19 Long started = launched.remove(mainType);
20 if (started != null) {
21 long runTime =
22 System.currentTimeMillis() - started;
23 RunningAverage rAve =

runningAverages.get(mainType);
24 if (rAve == null) {
25 runningAverages.put(
26 mainType, new RunningAverage(runTime);
27);
28 }
29 else {
30 rAve.average *= rAve.count;
31 rAve.average += runTime;
32 rAve.average /= ++rAve.count;
33 }
34 }
35 }
36 };
37 IDEPPPlugin.addListener(l);

Figure 11: Instrumenting program launch interactions.

editing, he might make several changes at the same location
in the source before committing it. IDE++ captures all of the
edits while a VCS captures only the difference between com-
mits. By capturing these granular edits instead of file saves,
IDE++ comes closer to capturing a developer’s thought pro-
cess. For example, a tricky problem might cause a developer
to navigate back and forth between files, make and unmake a
change, before reaching a decision.

Kersten’s and Murphy’s Mylyn Monitor was an important
step in the capture of IDE interactions [16]. Indeed, many
recent IDE applications, which we discuss next, depend on
the Mylyn Monitor. IDE++ continues the Mylyn Monitor’s
pioneering work along three dimensions — comprehensive-
ness, ease-of-use and granularity. IDE++ seeks to intercept all
IDE interactions, as identified by the phases of the software
life cycle. The set of IDE interactions is a moving target, so
at any instance in time, especially when a new plugin gains
traction, IDE++ will fall short of this goal. Thus, IDE++ has
been designed to make it easy for programmers to extend it
to new classes of interactions.

Robbes and Lanza proposed Spyware an IDE monitor that
captures fine-grained editing interactions [26]. Like IDE++,
Spyware is a framework on which to build applications.
Unlike IDE++, Spyware exclusively intercepts edits, ignoring
other IDE interactions. Vakilian et al.’s CodingSpectator and
CodingTracker aim to capturing low-level code refactoring
changes [32]. Yoon et al. present Fluorite that captures low-
level editing interactions [36]. The above work all focus
on a subset of interactions, while our work advocates the
systematic monitoring all kinds of interactions.

Applications Program comprehension is an important part
of the software engineering process. Researchers have applied
interaction information to aid program comprehension. Fritz
et al. proposed a model using interactions captured by the My-
lyn Monitor to judge a programmer’s knowledge of code [9].
Kersten and Murphy use the Mylyn Monitor to produce a
recommender for the next method to edit using their degree
of interest (DOI) measure, which is derived from a database
of interaction traces [16]. Guzzi et al. proposed a new type of
interaction, collective code bookmark to summarize source
code to help programmers understand software artifacts [1].
Guzzi et al. also presented a micro-blogging technique: group
a series of interactions and attach a message to describe the
interactions to enhance program comprehension [10]. Ko
et al. studied the relationship between interactive aspects of

IDEs and program understanding [18]. IDE++ can comple-
ment these applications by providing more information in
the form of finer-grained interactions and additional classes
of interactions, such a debugging interactions. For example,
the sequence of debugging commands a programmer issues
might indicate his degree of knowledge of some code.

A large body of work on in-program, assistative agents
for general purpose applications exists. The Lumière project,
which culminated in the Office Assistant in Microsoft Office,
is one notable example [13]; the fact that Office Assistant
became derisively known as Clippy and publicly “retired”
by a Microsoft’s CEO in front of a cheering audience2,
is a testament to the importance of default settings and
deployment, not the promise of the underlying technology.
Lumière’s focus is Bayesian learning, but also internally
abstracts its event stream to explicitly represent repetition
and inter-event gaps, with which we intend to experiment.
A more recent example is Ekstrand et al.’s work, where the
researcher combines free-form text query with in-program
context sensitivity to improve search results [7]. IDE++ can
be seen as the specialization of this line of work to the IDE
domain; We believe that the IDE++ ecosystem of user-aware
applications will quickly grow to encompass those that apply
Machine Learning to its stream of IDE interactions.

Brun et al. proposed speculative analysis that leverages
idle multicores to anticipate what a user may next wish to do,
such as compile or run JUnit, and kick off these tasks in the
background, shifting them to the foreground if the guess is
correct [3]. For instance, they speculatively apply Eclipse’s
quick fix tips in the background, then tell users which ones
worked. For version control interactions, they speculatively
merge a developer’s current branch in the background to
report how many conflicts would arise [4]. IDE++ allows the
extension of speculation to other programmer interactions.
For example, by monitoring editing interactions, the IDE
could run relevant test methods in the background, and notify
the programmer about failures.

Researchers have also employed interaction history for
prediction. Robbes et al. used Mylyn Monitor interaction
logs to improve program change prediction [29]. Robbes and
Lanza used edit history to improve IDE code completion [25].
Lee et al. described a set of micro interaction metrics, such
as how much time a programmer spends in one file and how
many selection operations he makes to predict bugs [19]. Pu-
randare et al. present a general framework for optimizing the
monitoring of loops [24]. IDE++’s fine-grained interaction
information provides more data as input to predictors. As an
example, Lee’s bug prediction model could include editing
interactions: A file that has been changed many times is likely
to contain bugs. IDE++ allows the construction of prediction
models for new classes of development activities, such as
running a test.

2 http://bit.ly/pmHCwI.

6. Conclusion and Future Work
The interactions between programmers and their IDEs con-
tain valuable information, much of which currently goes to
waste. Systematically recorded into an easy-to-use format,
these interactions could usher in new, highly personalized,
user-aware applications with the potential to improve pro-
gramming productivity. In this paper, we have introduced
IDE++, an IDE interaction monitor, to set the stage for inter-
preting and exploiting these interactions, tasks that require
their own research agenda. We have built four applications
— DevTime, Sage, Proctor, and Localizer — to demonstrate
the promise and utility of the new ecosystem of applications
IDE++ makes possible. We have published these applica-
tions as well as the IDE++ infrastructure onto the Eclipse
Marketplace. We welcome users to try it.

Programmer interaction histories are good candidates for
using data mining techniques to discover previously unknown
patterns. Experienced programmers’ interactions facilitate
knowledge reuse and provide new educational opportunities.
Of course, sharing the interaction information raises privacy
concerns. We intend to apply existing techniques, such as
CQual [8], taint analysis [23], and sanitization [34], to IDE++
to protect contributors.

As our interaction database grows, we will use it to study
questions such as, “How do the interaction histories of ex-
perienced programmers differ from those of novices?”, “Do
programmers from the same project share common interac-
tion patterns?”, and “Does interaction history correlate with
measures such as program complexity and bug density?”.
We plan to extend IDE++ to support more interactions, such
as support for compiler warning and collaboration plugins
such as EGit and Subclipse. Our monitoring infrastructure is
an open framework. We welcome other developers to build
applications upon it. Tutorials, documentation, tool down-
loads, and updates are available at http://marketplace.
eclipse.org/content/ide#.UzGgj1FdV3c.

Acknowledgments
This research was supported in part by NSF grant no.
1117603. The information presented here does not neces-
sarily reflect the position or the policy of the government and
no official endorsement should be inferred.

References
[1] G. Anja, H. Lile, L. Michele, P. Martin, and D. Arie van.

Collective code bookmarks for program comprehension. In
ICPC, 2011.

[2] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Speculative
analysis: exploring future development states of software. In
FSE, 2010.

http://bit.ly/pmHCwI
http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c
http://marketplace.eclipse.org/content/ide#.UzGgj1FdV3c

[4] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive
detection of collaboration conflicts. In FSE, 2011.

[5] B. de Alwis, G. Murphy, and M. Robillard. A comparative
study of three program exploration tools. In Program Compre-
hension, 2007. ICPC ’07. 15th IEEE International Conference
on, pages 103–112, June 2007.

[6] R. DeLine, M. Czerwinski, and G. G. Robertson. Easing pro-
gram comprehension by sharing navigation data. In VL/HCC,
pages 241–248, 2005.

[7] M. Ekstrand, W. Li, T. Grossman, J. Matejka, and G. Fitz-
maurice. Searching for software learning resources using ap-
plication context. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, UIST
’11, pages 195–204, New York, NY, USA, 2011. ACM.

[8] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type
qualifiers. In PLDI, 1999.

[9] T. Fritz, G. Murphy, and E. Hill. Does a programmer’s activity
indicate knowledge of code? In FSE, 2007.

[10] A. Guzzi, M. Pinzger, and A. van Deursen. Combining Micro-
Blogging and IDE interactions to support developers in their
quests. In ICSM, 2010.

[11] A. Halevy, P. Norvig, and F. Pereira. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24(2):8–12,
Mar. 2009.

[12] J. S. Hammond. IDE usage trends, 2008.

[13] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rom-
melse. The lumière project: Bayesian user modeling for infer-
ring the goals and needs of software users. In In Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intel-
ligence, pages 256–265. Morgan Kaufmann, 1998.

[14] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE, 2002.

[15] M. Kamkar, N. Shahmehri, and P. Fritzson. Bug localization by
algorithmic debugging and program slicing. In PLILP, 1990.

[16] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In FSE, 2006.

[17] R. B. Kline and A. Seffah. Evaluation of integrated software
development environments: Challenges and results from three
empirical studies. Int. J. Hum.-Comput. Stud., 63(6):607–27,
Dec. 2005.

[18] A. Ko, B. Myers, M. Coblenz, and H. Aung. An exploratory
study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE TSE,
2006.

[19] T. Lee, J. Nam, D. Han, S. Kim, and H. In. Micro interaction
metrics for defect prediction. In FSE, 2011.

[20] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In PLDI, 2003.

[21] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:
statistical model-based bug localization. In FSE, 2005.

[22] G. C. Murphy, M. Kersten, and L. Findlater. How are Java
software developers using the Elipse IDE? IEEE TSE, 2006.

[23] J. Newsome and D. X. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In NDSS, 2005.

[24] R. Purandare, M. B. Dwyer, and S. Elbaum. Monitor optimiza-
tion via stutter-equivalent loop transformation. In OOPSLA,
2010.

[25] R. Robbes and M. Lanza. How program history can improve
code completion. In ASE, 2008.

[26] R. Robbes and M. Lanza. SpyWare: a change-aware develop-
ment toolset. In ICSE, 2008.

[27] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How Do
Professional Developers Comprehend Software? In ICSE,
pages 255–265. IEEE, 2012.

[28] F. Roethlisberger. Management and the Worker. Harvard
University Press, 1939.

[29] R. Romain, P. Damien, and L. Michele. Replaying IDE inter-
actions to evaluate and improve change prediction approaches.
In MSR, 2010.

[30] The Eclipse Foundation. Eclipse instrumentation frame-
work. http://dev.eclipse.org/viewcvs/viewvc.cgi/platform-ui-
home/instrumentation/index .html?revision=1.12.

[31] The Economist. The quantified self: Counting every moment.
The Economist Magazine, 2012.

[32] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, R. Zilouch-
ian Moghaddam, and R. E. Johnson. The need for richer
refactoring usage data. In EUPLT, 2011.

[33] P. Viriyakattiyaporn and G. C. Murphy. Improving program
navigation with an active help system. In Proceedings of
the 2010 Conference of the Center for Advanced Studies on
Collaborative Research, pages 27–41. IBM Corp., 2010.

[34] G. Wassermann and Z. Su. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI, 2007.

[35] Wikipedia. Mental chronometry, Visited March 2014.
http://en.wikipedia.org/wiki/Mental_

chronometry.

[36] Y. Yoon and B. A. Myers. Capturing and analyzing low-level
events from the code editor. In EUPLT, 2011.

[37] A. Zeller. Yesterday, my program worked. today, it does not.
why? In FSE, 1999.

http://en.wikipedia.org/wiki/Mental_chronometry
http://en.wikipedia.org/wiki/Mental_chronometry

	Introduction
	Illustrative Example
	Design and Implementation of IDE++
	Methodology
	The Architecture of IDE++
	Interaction History
	Subscribing to IDE++ Events
	Extending IDE++

	Evaluation
	Comprehensiveness and Granularity
	IDE Interaction Replay
	Mylyn Monitor Comparison
	Developer-aware IDE Applications
	DevTime
	Proctor
	Localizer

	Writing IDE++ Applications

	Related Work
	Conclusion and Future Work

