Reusing Debugging Knowledge via Trace-based Bug Search

Zhongxian Gu

Earl T. Barr Drew Schleck Zhendong Su

Department of Computer Science, University of California, Davis
{zgqu,etbarr,dtschleck, su}@ucdavis.edu

Abstract

Some bugs, among the millions that exist, are similar to each
other. One bug-fixing tactic is to search for similar bugs that
have been reported and resolved in the past. A fix for a similar
bug can help a developer understand a bug, or even directly fix
it. Studying bugs with similar symptoms, programmers may
determine how to detect or resolve them. To speed debugging,
we advocate the systematic capture and reuse of debugging
knowledge, much of which is currently wasted. The core
challenge here is how to search for similar bugs. To tackle
this problem, we exploit semantic bug information in the form
of execution traces, which precisely capture bug semantics.
This paper introduces novel tool and language support for
semantically querying and analyzing bugs.

We describe OSCILLOSCOPE, an Eclipse plugin, that uses
a bug trace to exhaustively search its database for similar
bugs and return their bug reports. OSCILLOSCOPE displays
the traces of the bugs it returns against the trace of the tar-
get bug, so a developer can visually examine the quality
of the matches. OSCILLOSCOPE rests on our bug query lan-
guage (BQL), a flexible query language over traces. To realize
OSCILLOSCOPE, we developed an open infrastructure that
consists of a trace collection engine, BQL, a Hadoop-based
query engine for BQL, a trace-indexed bug database, as well
as a web-based frontend. OSCILLOSCOPE records and up-
loads bug traces to its infrastructure; it does so automatically
when a JUnit test fails. We evaluated OSCILLOSCOPE on
bugs collected from popular open-source projects. We show
that OSCILLOSCOPE accurately and efficiently finds similar
bugs, some of which could have been immediately used to
fix open bugs.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques; D.2.5 [Software
Engineering]: Testing and Debugging; D.3.1 [Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19-26, 2012, Tucson, Arizona, USA.

Copyright © 2012 ACM 978-1-4503-1561-6/12/10. .. $10.00

Languages]: Formal Definitions and Theory

General Terms Design, Languages, Reliability

Keywords OSCILLOSCOPE, reusing debugging knowledge

1. Introduction

Millions of bugs have existed. Many of these bugs are similar
to each other. When a programmer encounters a bug, it is
likely that a similar bug has been fixed in the past. A fix for a
similar bug can help him understand his bug, or even directly
fix his bug. Studying bugs with similar causes, programmers
may determine how to detect or resolve them. This is why
programmers often search for similar, previously resolved,
bugs. Indeed, even finding similar bugs that have not been
resolved can speed debugging.

We theorize that, in spite of the bewildering array of
applications and problems, limitations of the human mind
imply that a limited number of sources of error underlie
bugs [17]. In the limit, as the number of bugs in a bug
database approaches all bugs, an ever larger proportion of
the bugs will be similar to another bug in the database. We
therefore hypothesize that, against the backdrop of all the
bugs programmers have written, unique bugs are rare.

Debugging unites detective work, clear thinking, and
trial and error. If captured, the knowledge acquired when
debugging one bug can speed the debugging of similar bugs.
However, this knowledge is wasted and cannot be reused if
we cannot search it. The challenge is to efficiently discover
similar bugs. To answer this challenge, this paper employs
traces to precisely capture the semantics of a bug. Informally,
an execution trace is the sequence of operations a program
performs in response to input. Traces capture an abstraction
of a program’s input/output behavior. A bug can be viewed
as behavior that violates a program’s intended behavior.
Often, these violations leave a footprint, a manifestation of
anomalous behavior (Engler et al. [5]) in a program’s stack
or execution trace.

This paper introduces novel tool and language support to
help a programmer accurately and efficiently identify similar
bugs. To this end, we developed OSCILLOSCOPE, an Eclipse
plugin, for finding similar bugs and its supporting infras-
tructure. At the heart of this infrastructure is our bug query
language (BQL), a flexible query language that can express a

wide variety of queries over traces. The OSCILLOSCOPE in-
frastructure consists of 1) a trace collector, 2) a trace-indexed
bug database, 3) BQL, 4) a query engine for BQL, and 5)
web and Eclipse user interfaces. OSCILLOSCOPE is open and
includes the necessary tool support to facilitate developer
involvement and contribution.

The OSCILLOSCOPE database contains and supports
queries over both stack and execution traces. Stack traces are
less precise but cheaper to harvest than execution traces. We
quantify this precision trade-off in Section 4.4. When avail-
able, stack traces can be very effective, especially when they
capture the program point at which a bug occurred [3, 28].
Indeed, a common practice when bug-fixing is to paste the
error into a search engine, like Google. Usually, the error gen-
erates an exception stack trace. Anecdotally, this tactic works
surprisingly well, especially with the errors that novices
make when learning an API. OSCILLOSCOPE generalizes
and automates this practice, making systematic use of both
execution and stack traces.

To validate our hypothesis that unique bugs are rare, we
collected 877 bugs from the Mozilla Rhino and Apache
Commons projects. We gave each of these bugs to OSCILLO-
SCOPE to search for similar bugs. We manually verified each
candidate pair of similar bugs that OSCILLOSCOPE reported.
If we were unable to determine, within 10 minutes, that a pair
of bugs was similar, i.e. knowing one bug a programmer could
easily fix the other, we conservatively deemed them dissim-
ilar. Using this procedure, we found similar bugs comprise
a substantial portion of these bugs, even against our initial
database: %Z—% ~ 31%. OSCILLOSCOPE finds duplicate bug
reports as a special case of its search for similar bugs; while
duplicates comprised 74 of the 273 similar bugs, however, the
majority are nontrivially similar. These bugs are field bugs,
not caught during development or testing, and therefore less
likely to be similar, a fact that strengthens our hypothesis.
When querying unresolved bugs against resolved bugs in the
Rhino project, OSCILLOSCOPE matches similar bugs effec-
tively, using information retrieval metrics we precisely define
in Section 4.1. Of the similar bugs OSCILLOSCOPE returns,
48 of the could have been immediately used to fix open bugs.

Finding bug reports similar to an open, unresolved bug
promises tremendous practical impact: it could reuse the
knowledge of the community to speed debugging. Linus’
Law states “given enough eyeballs, all bugs are shallow.” An
effective solution to the bug similarity problem will help
developers exploit this precept by allowing them to reuse the
eyes and minds behind past bug fixes. OSCILLOSCOPE has
been designed and developed to this end.

We make the following main contributions:

* We articulate and elaborate the vision that most bugs are
similar to bugs that have already been solved and take
the first steps toward a practical tool built on traces that
validates and shows the promise of this vision;

* We present OSCILLOSCOPE a tool that uses traces to

1 DynaBean myBean = new LazyDynaBean();
2 myBean.set("myDynaKey", null);
3 Object o = myBean.get("myDynaKey");
4 if (o == null)
5 System.out.println(
6 "Expected result."
7)
8 else
9 System.out.println(
10 "What actually prints."
11)
Figure 1: When a key is explicitly bound to null,

LazyDynaBean does not return null.

find similar bugs and reuse their debugging knowledge to
speed debugging;

* We have developed an open infrastructure for OSCILLO-
SCOPE, available at http://bql.cs.ucdavis.edu, com-
prising trace collection, a trace-indexed bug database, the
bug query language BQL, a Hadoop-based query engine,
and web-based and Eclipse plugin user interfaces; and

* We demonstrate the utility and practicality of our approach
via the collection and study of bugs from the Apache
Commons and Mozilla Rhino projects.

2. Illustrating Example

Programmers must often work with unfamiliar APIs, some-
times under the pressure of a deadline. When this happens,
a programmer can misuse the API and trigger cryptic errors.
The following section describes a real example.

Java programmers use getter and setter methods to interact
with Java beans. To handle dynamic beans whose field names
may not be statically known, Java provides Reflection and
Introspection APIs. Because these APIs are hard to un-
derstand and use, the Apache BeanUtils project provides
wrappers for them. BeanUtils allows a programmer to in-
stantiate a LazyDynaBean to set and get value lazily without
statically knowing the property name of a Java bean, as on
line 2 of Figure 1. When an inexperienced programmer used
LazyDynaBean in his project, he found, to his surprise, that,
even though he had explicitly set a property to null, when
he later retrieved the value from the property, it was not null.
Figure 1 shows sample code that exhibits this bug: executing
it prints “What actually prints.”, not “Expected result.”.

Since this behavior was quite surprising to him, the pro-
grammer filed bug BeanUtils-342 on March 21, 2009.
Five months later, a developer replied, stating that the
observed behavior is the intended behavior. In Figure 2,
LazyDynaBean’s get method consults the internal map
values on line 9. If the result is null, the get method first
calls the method createOtherProperty, which by default
calls createProperty to instantiate and return an empty ob-
ject. In the parameter list of createOtherProperty, get calls
getDynaProperty, which returns Object.class on a name

http://bql.cs.ucdavis.edu

1 public Object get(String name) {

2 if (name == null) {

3 throw new IllegalArgumentException(
4 "No property name specified"

5)

6 }

7

8 // Value found

9 Object value = values.get(name);
10 if (value != null) {

11 return value;

12 }

13

14 // Property doesn’t exist
15 value = createProperty(
16 name,

17 dynaClass.getDynaProperty(
18 name

19) .getType()

20)

21

22 if (value !'= null) {

23 set(name, value);

24 }

25

26 return value;

27 }

Figure 2: LazyDynaBean.get(String name) from revision
1295107, Wed Oct 5 20:35:31 2005.
.l Problems | @ Javadoc |2, Declaration [[~] Oscilloscope &2 Q¥ =0

Bug ID Title Distance

Bugs that match
BEAMUTILS-24 Method get in LazyDynaBean don't returns null if... 34
BEAMUTILS-61 PropertyUtilsBean isReadable() and isWriteable() .. 49
BEAMUTILS-84 eanUtils.populate() throws lllegalArgumentExcep... 49

4 T)

Figure 3: OSCILLOSCOPE returns bug reports similar to
BeanUtils-342.

Q Commons BeanUtils / BEANUTILS-24
- [BeanUtils] Method get in LazyDynaBean don't returns
null if the value of the propertie is null [SIC]
Log In

All | Comments = Work Log History — Activity — Subversion Commits

FNiall Pemberton added a comment - 06/Oct/05 05:42
Thanks Roi for pointing this out - | have just fixed this

If you need a work round in the mean time then create your own lazy
implementation along the following lines:

public class MyLazyBean extends LazyDynaBean {

public MyLazyBean() { super(); }
protected Object createProperty(String name, Class type) {

if (type == Object.class) { return null; } else { return super.createProperty(name, type); }

Figure 4: Snapshot of the bug report for BeanUtils-24.

bound to null. He did, however, suggest a workaround: sub-
class LazyDynaBean and override its createOtherProperty
method to return null when passed Object.class as its type
parameter. This in turn would cause LazyDynaBean.get() to
return null at line 26, the desired behavior.

How could OSCILLOSCOPE have helped the programmer

solve this problem? Assuming the OSCILLOSCOPE database
had been populated with traces from the BeanUtils project,
a programmer would use OSCILLOSCOPE to look for bugs
whose traces are similar to the trace for her bug, then return
their bug reports. Then she would examine those bug reports
to look for clues to help her understand and fix her bug.
Ideally, she would find a fix that she could adapt to her bug.
Bug BeanUtils-342 is the actual bug whose essential
behavior Figure 1 depicts. To use OSCILLOSCOPE to search
for bugs similar to BeanUtils-342, a developer can first issue
a predefined query. When a developer does not yet know
much about their current bug, a predefined query that we
have found to be particulary effective is the “suffix query”.
This query deems two bugs to be similar when the suffixes of
their traces can be rewritten to be the same; its effectiveness is
due to the fact that many bugs terminate a program soon after
they occur. When a developer specifies the suffix length and
edit distance and issues the suffix query to search for bugs
similar to BeanUtils-342, OSCILLOSCOPE returns the bug
reports in Figure 3. The first entry is BeanUtils-24, where
the get method of LazyDynaBean did not return null even
when the property was explicitly set to null.
OSCILLOSCOPE executes the suffix query by comput-
ing the edit distance of the suffix of BeanUtils-342’s
trace against the suffix of each trace in its database. Here
is the tail of the method call traces of BeanUtils-342
and BeanUtils-24, the closest bug OSCILLOSCOPE found:

BeanUtils-342 BeanUtils-24

BasicDynaClass setProperties
DynaProperty getName
DynaProperty getName
LazyDynaBean isDynaProperty
LazyDynaClass isDynaProperty
LazyDynaClass getDynaProperty
LazyDynaBean get
LazyDynaBean createProperty
LazyDynaBean set
DynaProperty getType

LazyDynaBean set

LazyDynaBean isDynaProperty
LazyDynaClass isDynaProperty
LazyDynaClass getDynaProperty
DynaProperty getType
LazyDynaBean createProperty
LazyDynaBean createOtherProperty
LazyDynaBean set

DynaProperty getType
LazyDynaBean class$

Each method call in these two traces is an event; informally,
OSCILLOSCOPE looks to match events, in order, across the
two traces. Here, it matches the two calls to isDynaProperty
followed by getDynaProperty, then the calls to get and set.
Intuitively, the distance between these two traces is the num-
ber of method calls one would have to change to make the
traces identical.

Figure 4 is the snapshot of the bug report of BeanUtils-24.
The same developer who replied to BeanUtils-342 had also
replied to BeanUtils-24 four years earlier. From his fix to
BeanUtils-24, the fix for BeanUtils-342 is immediate. With
the help of OSCILLOSCOPE, the programmer could have
solved the bug in minutes, instead of possibly waiting five
months for the answer. This example shows how OSCILLO-
SCOPE can help a programmer find and reuse the knowledge
embodied in a bug report to fix an open bug.

3. Design and Realization of OSCILLOSCOPE

This section introduces the key components of OSCILLO-
SCOPE: its user-level support for trace-based search for sim-
ilar bugs, its bug query language, and core technical issues
we overcame to implement it.

3.1 User-Level Support

To support trace-based search for similar bugs, OSCILLO-
SCOPE must harvest traces, allow users to define bug similar-
ity either by selecting predefined queries or by writing cus-
tom queries, process those queries to search a trace-indexed
database of bug reports, display the results, and present a user
interface that makes this functionality easy to use. Figure 5 de-
picts the architecture of OSCILLOSCOPE that supports these
tasks.

Eclipse Plugin Most developers rely on an integrated de-
velopment environment (IDE); to integrate OSCILLOSCOPE
smoothly into the typical developer’s tool chain and workflow,
especially to complement the traditional debugging process,
we built OSCILLOSCOPE as an Eclipse plugin. OSCILLO-
SCOPE also supports a web-based user interface, described in
a tool demo [9].

OSCILLOSCOPE automates the instrumentation of buggy
programs and the uploading of the resulting traces. When a
developer who is using OSCILLOSCOPE encounters a bug
and wants to find the bug reports similar to her current bug,
she tells OSCILLOSCOPE to instrument the buggy code, then
re-triggers the bug. OSCILLOSCOPE automatically uploads
the resulting trace to its trace-indexed database of bug reports.

Predefined Queries OSCILLOSCOPE is equipped with
predefined queries; in practice, users need only select a
query and specify that query’s parameters, such as a regular
expression over method names or an edit distance bound,
i.e. a measure of the cost of writing one trace into another
which Section 3.2.2 describes in detail. Since bugs often
cause a program to exit quickly, we have found that the
suffix query, (introduced in Section 2) which compares short
suffixes of traces with a modest edit distance bound, to be
quite effective. Section 4.1 describes how we discovered and
validated this suffix query. The bulk of OSCILLOSCOPE’s
predefined queries, like the suffix query, have simple, natural
semantics. Once the buggy trace has been uploaded, the
developer can allow OSCILLOSCOPE to automatically use the
last selected query to search for similar bugs and return their
bug reports, or select a query herself. OSCILLOSCOPE’s query
engine, which is based on Hadoop, performs the search.
When a JUnit test fails, these steps occur automatically in
the background: OSCILLOSCOPE instruments and reruns the
test, uploads the resulting test to the database, then, by default,
issues a predefined suffix query to search for similar bugs
and returns the results. This feature is especially valuable as
it targets bugs that occur during development and are more
likely to be similar to other bugs than field bugs which have
evaded regression testing, inspection and analysis to escape

into deployment. To speed response time, OSCILLOSCOPE
returns partial results as soon as they are available. Users
refresh to see newer results. OSCILLOSCOPE can also visually
compare traces to help developers explore and understand the
differences and similarities between two traces.

To find the bug report with the fix to the bug in our
illustrating example in Section 2, the developer would direct
OSCILLOSCOPE to instrument the buggy code, re-triggered
the bug, then issued the default suffix query. Behind the
scenes, OSCILLOSCOPE would harvest and upload the trace,
then execute the query and display the resolved bug report
with the relevant fix.

Trace Granularity ~ Using the OSCILLOSCOPE, program-
mers can trace code at statement or method granularity, as
show in Figure 6. Statement-granular traces allow OSCIL-
LOSCOPE to support the search for local bugs, bugs whose
behavior is contained within a single method, and facilitates
matching bugs across different projects that run on the same
platform and therefore use the same instruction set archi-
tecture. OSCILLOSCOPE supports coarser granularity traces,
such as replacing a contiguous sequence of method call on a
single class with that class name, by post-processing.

Chop Points Instrumentation is expensive, SO we pro-
vide OSCILLOSCOPE provides a chop operator that allows
programmers to set a chop point, a program point at which
tracing starts or ends. A programmer can also use chop points
to change the granularity of tracing from method calls to
statements. By restricting tracing to occur within a pair of
chop points, chopping enables the scalability of fine-grained,
i.e. statement-granular, tracing. When debugging with Os-
CILLOSCOPE, a developer will resort to setting chop points
to collect a partial trace for their current bug when collect-
ing a complete trace is infeasible. Knowing where to place
chop points involves guesswork; its payoff is the ability to
query the OSCILLOSCOPE database. Thus, the OSCILLO-
SCOPE database contains partial traces and traces that may
contain events at different levels of granularity.

In a world in which OSCILLOSCOPE has taken hold, devel-
opers will routinely upload traces when they encounter a bug.
To this end, we have setup an open bug database, available at
our website, and welcome developers to contribute both the
buggy traces and the knowledge they acquired fixing the bugs
that caused them. Our tool is not just for students and open
source developers. We have made the entire OSCILLOSCOPE
framework privately deployable, so that companies can use
OSCILLOSCOPE internally without having to share their bug
database and worry about leaking confidential information.

We have posited that, when two bugs may share a root
cause, this fact manifests itself as a similarity in their traces.
Prior to this region of similarity, of course, the two traces
might be arbitrarily different. Internally, OSCILLOSCOPE
relies on BQL, its bug query language, and the insight and
ingenuity of query writers to write BQL queries that isolate
the essence of a bug; these queries define bug similarity

/_ Oscilloscope \

Trace — I
- R
collection -
| Predefined Bug database
@ ‘ BQL queries —
&" N T Query engine
A N — 2 Bytecode Harvest
2™, =
\\%\I { E [instrumentor trace ?|Trace indexing
| — =
U — 3
S l=—=F © =
Developer <> Similar <
\ bug reports / Bugreports
Figure 5: Debugging with the OSCILLOSCOPE Framework.
execution traces.

M - ~Hre e
Method Level |

Instruction Level

Disabled

dTreTT

nal int initiclVolueEVariable = 8888;

g in the generated code
int(string str) {
intln(str);
)-append("\n");

Figure 6: Selecting execution trace granularity in the OSCIL-
LOSCOPE Eclipse plugin.

and drive OSCILLOSCOPE’s search for similar bugs. Thus,
OSCILLOSCOPE rests on BQL, which we describe next.

3.2 BOQL: A Bug Query Language

A bug is behavior that violates a user’s requirements. The core
difficulty of defining a bug more precisely is that different
users, even running the same application, may have different
requirements that change over time. In short, one user’s bug
can be another’s feature. To tackle this problem, we have
embraced expressivity as the central design principle of BQL;
it allows writing of queries that embody different definitions
of buggy behavior. To support such queries, our database must
contain program behaviors. Three ways to capture behavior
are execution traces, stack traces, and vector summarizations
of execution traces. An execution trace is a sequence of events
that a program emits during execution and precisely captures
the behavior of a program on an input. Collecting execution
traces is expensive and they tend to be long, mostly containing
events irrelevant to a bug. Stack traces encode execution
events keeping only the current path from program entry to
where a bug occurs. Finally, one can summarize an execution
trace into a vector whose components are a fixed permutation
of a program’s method calls. For example, the summarization
of trace ABA into a vector whose components are ordered
alphabetically is (2,1), which discards the order of events.
In Section 4.4 we quantify the loss of precision and recall
these approaches entail. Therefore, we define bug similarity
and support queries for bug data, such as a fix, in terms of

3.2.1 Terminology

T denotes the set of all traces that a set of programs can
generate. Each trace in T captures an execution of a program
(We discuss our data model in more detail in Section 3.2.3).
B is the set of all bugs. The bug b € B includes the afflicted
program, those inputs that trigger a bug and the traces they
induce, the reporter, dates, severity, developer commentary,
and, ideally, the bug’s fix. The function 7 : B — 2T returns the
set of traces that trigger b. The set of all unresolved bugs U
and the set of all resolved bugs R partition B. We formalize
the ideal bug similarity in the oracle ¢. For by, b; € B,

T if by is similar to by wrt ¢
F otherwise

similar(bg,by) = { (1)

which we use to define, for b € B,
[0] = {x € B | similar(b,x)}, 2

the set of all bugs that are, in fact, similar to b.
For by, b; € B, and the query processing engine Q,

T if by is similar to b; wrt Q
F otherwise

match(bo, by) — { 3)

which we use to define
[b] = {x € B | match(b,x)}, 4)

the set of all bugs that the query for b returns.

Ideally, we would like [b] = [b], but for debugging it suf-
fices that we are 1) sound: match(b;,b;) = similar(b;,b;),
and 2) relatively complete: similar(b;,b;) = 3by € [b;] —
{b;} match(b;, by), for any b; # b;. In Section 4, we demon-
strate the extent to which we use traces to achieve these goals.

Both [b] and [b] are reflexive: Vb € B, b € [b] Ab € [b],
which means that {b} C [b] N [b] # 0. We are often interested
in bugs similar to b other than b itself, so we also define

Uy = [b]NU — {b}
Ry = [b]NR — {b}

unresolved bugs that match b (5)
resolved bugs that match b. (6)

(query) := SELECT (bug)"[FROM (db) "]
WHERE (cond) [DISTANCE (distance)]
(db) == X|ALL
(cond) ::= {(cond) && (cond) | {cond) |l {cond) | ({cond))
| INTERSECT?({bug), (pat)[,d[,n])
| JACCARD?({bug), (pat),t[,d])
| SUBSET?((bug), (par)[,d])
(bug) := Traces |[len1{bug) | (bug)llen]
| PROJ((bug),S)
(pat) = o | (bug) | (pat) | (pat) | (pat)™ | ({pat))

Figure 7: The syntax of BQL: X is a project; for the bug b,
Traces =1(b); o is an event; and S is a set of events.

3.2.2 The syntax of BQL

Figure 7 defines the syntax of BQL, which is modeled after
the standard query language SQL. The query “SELECT b FROM
ALL WHERE INTERSECT? (b, "getKeySet")” returns all bugs
whose traces have a nonempty intersection with the set of
all traces that call the getKeySet method. The clause FROM
Projectl, Project2 restricts a query to bugs in Projectl
or Project2. The terminal ALL removes this restriction, and
is the default when the FROM clause is omitted.

Predicates In addition to the standard Boolean operators,
BQL provides SUBSET?, INTERSECT?, and JACCARD? predi-
cates to allow a programmer to match a bug with those bugs
whose traces match the pattern, when the target bug’s traces
are a subset of, have a nonempty intersection with, or over-
lap with those traces. For example, “SELECT b FROM ALL
WHERE SUBSET?(b,bsg,7)” returns those bugs whose traces
are a subset of bgy7’s traces.

Traces may differ in numerous ways irrelevant to the
semantics of a bug. For example, two traces may have taken
different paths to a buggy program point or events with
the same semantics may have different names. Concrete
execution traces can therefore obscure semantic similarity,
both cross-project and even within project. As a first step
toward combating the false negatives this can cause, BQL
allows two traces to differ in Levenshtein edit distance within
a bound. The Levenshtein distance of two strings is the
minimum number of substitutions, deletions and insertions
of a single character needed to rewrite one string into another.
The Levenshtein distance of 011 and 00 is 2 (011 — 01 —
00).

The application of edit distance to a bug’s traces generates
a larger set of strings. Thus, BQL adds the distance parameter
d to its set predicates to bound the edit distance used to pro-
duce traces during a similarity search. Edit distance relaxes
matching and can introduce false positives. To combat this
source of imprecision, the INTERSECT? operator also takes
n, an optional constraint that specifies the minimum num-

ber of a bug’s traces that must be rewritten into one of the
target bug’s traces. For example, assume b5,7 contains multi-
ple traces that trigger an assertion failure and a programmer
wants to search for other bugs with multiple traces. The pro-
gram could use the predicate INTERSECT? (b, bgy7, 50,
3), which forms the set of pairs of traces 7(b) x #(bg>7) and
is true if the members of at least 3 of these pairs can be
rewritten into one another using 50 edits.

Operators When we know enough about the problem
domain or salient features of our bug, we may wish to
restrict where traces match. The terminal behavior of a
buggy program, embodied in the suffix of its execution trace,
often captures a bug’s essential features. Or we may wish to
consider only those traces in which the application initialized
in a certain fashion and restrict attention to prefixes. Thus,
BQL provides prefix and suffix operators. These operators
use array bracket notation and return the specified length
prefix or suffix.

A programmer may wish to project only a subset of events
in a trace. For example, when searching for bugs similar
to bgy7, a developer may want to drop methods in the log
package to reduce noise. To accomplish this task, he writes

SELECT bug FROM ALL WHERE SUBSET?(
PROJ (bug, "read,write,close"),

) b527. 10

where "read,write, close" names the only methods in the
trace in which we are interested.

Patterns The last line of Figure 7 defines the BQL’s pattern
matching syntax. Here, the terminals are either (through the
(bug) the rule), r(bug), the set of traces that trigger a bug,
or 0 € X,, asymbol (i.e. event) in a trace. Patterns that mix
symbols from different event alphabets can succinctly express
subsets of traces. For instance, a query writer may wish to
find bugs that traverse the class ¢, on the way to the method
my in ¢}, and then execute some method in the class c¢.. The
pattern c,m c. achieves this. As a concrete example, consider
a developer who wishes to find all traces that invoke methods
in the class PropertyConfiguration (abbreviated PC in the
query below) before invoking the method escapeJava in
StringEscapeUtils; this generates the query

SELECT bug FROM Configuration WHERE
INTERSECT? (bug, "PC escapelava").

3.2.3 Semantics

BQL rests on a hierarchy of disjoint alphabets of execution
events, shown in Figure 8. At the lowest level, execution
events are instructions. An instruction symbol encodes an
opcode and possibly its operands; a method symbol encodes
a method’s name and possibly its signature and parameters.
Sequences of instructions define statements in the source
language; sequences of statements define basic blocks whose
sequences define a path through a method. Thus, a project

Class

Method

Instruction

Figure 8: Hierarchy of trace event alphabets.

[[SELECT (by,--- ,bn) FROM (dbl, 7dbm) WHERE cond]]
:{(blv"' 7b7l) ‘ (b17"' 7bn) € ﬂcondﬂl n U [[dbl]]}

i€[l,m]
[SELECT (by,--- ,b,) FROM (dby,--- ,db,,) WHERE cond
DISTANCE dist]

—{(b1,+++ba) | (b1, ,ba) € [cond] [dist] 1 |J [dbi]}

ic[1,m]
X ifdb=XCT
[[db]]:{ T ifdb=ALL

[dist] € {h,l,u}

[cond; && cond,] =A6.[cond;]d Acond;]d
[cond; Il cond,] = A6.[cond,]6 V[cond,]d

[cond)] = [cond] = Aé.[cond]é

Figure 9: Semantics of queries and Boolean operators.

[p°] = [pl*
[(p)]=1rl

[Pl=%(p)CcT
[p1pl=[r]ulpl

Figure 10: Semantics of the pattern operators.

defines a sequence of languages of traces defined over each
alphabet in its hierarchy.

Formally, a project defines a disjoint sequence of alphabets
Y;,i € N where X, is the instruction alphabet. Let £ (P@X)
denote the language of traces the project P generates over the
event alphabet X. Then, for the project P and its alphabets,
each symbol in a higher level language defines a language
in P’s lower-level languages: Vo € £, 1,.4(0) C £ (P@Y,).
Traces can mix symbols from alphabets of different abstrac-
tion levels, so long as there exists an instruction-level transla-
tion of the trace ¢ such thatr € £ (P@X,).

The semantics of BQL is mostly standard. Figure 9
straightforwardly defines queries and the standard Boolean
operators. It defines [d1st] as a distance function and uses
lambda notation to propagate its binding to the BQL’s set
predicates. The semantics of patterns in Figure 10 are stan-

[INTERSECT?(b, p)] = [6] N [p] # 0
[INTERSECT?(b, p,d)] = [b] Na [p] # 0
[INTERSECT?(b, p,n)] = |[b] N [p]| = n

[INTERSECT?(b, p,d,n)] = |[b] Na [p]| = n

[JACCARD?(b, p,1)] = % =t

” _ [l na [Pl
WACCARD2(b, p,1,d)] = - =1
[SUBSET?(, p)] = [#] < [p]
[SUBSET?(b, p,d)] =Vx € [b],3y € [p] 6(x,y) <d

Figure 11: Semantics of the intersect, Jaccard and subset
predicates.

[Traces] € 2T
[PROJ(b,S)] = [b]|s
[Lien1b] = {o| 3B of € [b] A|ot| = len}
[bLlenT] = {B | 3o af € [B] A|B| = len}

Figure 12: Semantics of the trace operators.

dard; the .Z, used to define pattern semantics, is the classic
language operator.

Set Predicates and Edit Distance In Figure 9, [b] =
[Traces] € 2T and the edit distance function [dist] has
signature £* x £* — N. The set of allowed edit distance
functions is {&,l,u}. In this set, & denotes Hamming, /
denotes Levenshtein (the default) and u denotes a user-
specified edit distance function. BQL allows query writers
to specify a distance function to give them control over
the abstraction and cost of a query. For instance, a query
writer may try a query using Hamming distance. If the results
are meager, he can retry the same query with Levenshtein
distance, which matches more divergent traces.

For & € {h,1,u}, the function Ny : 2% x 2" x N — 2% is

XNgY=A{z] zeX,3yeY 6(y,2) <d 7
VzeY,IxeX §(x,z) < d}

and constructs the set of all strings in X or Y that are within
the specified edit distance of an element of the other set.
We use Ny to define JACCARD? and INTERSECT? in Figure 11.
For JACCARD?, the Jaccard similarity must meet or exceed
t € [0,1]; for INTERSECT?, the cardinality of the set formed
by Ny must meet or exceed n € N.

A user-defined distance function u may be written in any
language so long as it matches the required signature. One
could define distance metric that reduces a pair of method
traces to sets of methods then measure the distance of those
sets in terms of the bags of words extracted from the method
names, identifiers or comments. Alternatively, one could

define a Jaccard measure over the sets of methods or classes
induced by two traces, scaling the result into N.

Trace Operators To specify the length of prefixes and
suffixes in Figure 12, we use len € N. In the definition
of PROJ, proj; is the projection map from set theory and
S C L, ie Sis asubset of symbols from one of the event
abstraction alphabets. BQL’s concrete syntax supports regular
expressions as syntactic sugar for specifying S.

3.3 Implementation

Four modules comprise OSCILLOSCOPE: a bytecode instru-
mentation module, a trace-indexed database, a query pro-
cessing engine, and two user interfaces. The instrumentation
module inserts recording statements into bytecode. The in-
strumentation module is built on the ASM Java bytecode
manipulation and analysis framework. For ease of smooth
interaction with existing workflows, our database has two
forms: a standalone database built on Hadoop’s file system
and an trace-based index to URLSs that point into an existing
Bugzilla database. The OSCILLOSCOPE plug-in for Eclipse
supports graphically comparing traces. A challenge we faced,
and partially overcame, is that of allowing the comparison
of traces visually regardless of their length. An interesting
challenge that remains is to allow a user to write, and refine,
queries visually by clicking on and selecting portions of a
displayed trace. The web-based Ul is AJAX-based and used
Google’s GWT.
Internally, traces are strings with the syntax

(Trace) = (Event) | (Event)(Trace)
(Event) == (Method) | (Instruction)
(Method) := M FQClassName MethodName Signature

| S FQClassName MethodName Signature
I OPCODE (Operands)
OPERAND | OPERAND (Operands)

(Instruction) =
(Operands) =

An example method event follows
M org/apache/commons/beanutils/LazyDynaClass \
getDynaProperty (Ljava/lang/String;) \
Lorg/apache/commons/beanutils/DynaProperty; .
Here, M denotes an instance method (while S in the syntax
denotes a static method). The fully qualified class name
follows it, then the method name, and finally the method
signature. To capture method events, we inject logging into
each method’s entry. For statements, we inject logging into
basic blocks. To produce coarser-grained traces, we post-
process method-level traces to replace contiguous blocks of
methods in a single class or package with the name of the
class or package.

Query Engine The overhead of query processing lies in
two places: retrieving traces and comparing them against
the target trace. For trace comparison, we implemented an
optimized Levenshtein distance algorithm [10]. To scale to
large databases (containing millions of traces), OSCILLO-
SCOPE’s query engine is built on top of Apache Hadoop,

a framework that allows for the distributed processing of
large data sets across clusters of computers. The essence of
Hadoop is MapReduce, inspired by the map and reduce func-
tions commonly used in functional programming. It enables
the processing of highly distributable problems across huge
datasets (petabytes of data) using a large number of com-
puters. The “map” step divides an application’s input into
smaller sub-problems and distributes them across clusters and
“reduce” step collects the answers to all the sub-problems and
combines them to form the output.

OSCILLOSCOPE’s query processing is an ideal case for
MapReduce, since it compares all traces against the target
trace. This comparison is embarrassingly parallelizable: it
can be divided into sub-problems of comparing each trace in
isolation against the target trace. Each mapper processes a
single comparison and the “reduce” step collects those bug
identifiers bound to traces within the edit distances bound to
form the final result. Section 4 discusses the stress testing we
performed for OSCILLOSCOPE against millions of traces.

3.4 Extending OSCILLOSCOPE with New Queries

OSCILLOSCOPE depends on experts to customize its pre-
defined queries for a particular project. These experts will
use BQL and its operators to write queries that extract trace
subsequences that capture the essence of a bug. Learning
BQL itself should not be much of a hindrance to these ex-
perts, due to its syntax similarity to SQL and its reliance
on familiar regular expressions. To further ease the task of
writing queries, OSCILLOSCOPE visualizes the difference of
two traces returned by a search and supports iterative query
refinement by allowing the query writer to edit the history of
queries he issued. To write effective queries, an expert will,
of course, need to know her problem domain and relevant
bug features; she will have to form hypotheses and, at times,
resort to trial and error. The payoff for a query writer, and
especially for an organization using OSCILLOSCOPE, is that,
once written, queries can be used over and over again to find
and fix recurring bugs. Across different versions of a project,
even though methods may change names as a project evolves,
OSCILLOSCOPE can still find similar bugs if their signature
in a trace is sufficiently localized and enough signposts, such
as method names, remain unchanged so that edit distance can
overcome the distance created by those that have changed.

Single Regex Queries Configuration-323 occurred when
DefaultConfigurationBuilder misinterpreted property val-
ues as lists while parsing configuration files. The reporter
speculated that the invocation of ConfigurationUtils.copy()
during internal processing was the cause. To search for bugs
in the Configuration project that invoke the copy () method
in the ConfigurationUtils class, the reporter could have
issued

SELECT bug FROM Configuration WHERE
SUBSET? (bug, "ConfigurationUtils.copy()").

The result set contains 272 and 283, in addition to 323.
Developers acknowledged the problem and provided a
workaround. Thus, the bug 323 can be solved identifying
and studying 272 and 283. These bugs predate 323. Here,
OSCILLOSCOPE found usefully similar bugs using a query
based on a simple regular expression that matched a single
method call.

Lang-421 is another example of a bug for which a simple
query parameterized on a regular expression over method
names would have sped its resolution. In this bug, the method
escapeJava() in the StringEscapeUtils class incorrectly
escaped the ‘/’ character, a valid character in Java. In Apache
Commons, the Configuration project depends on Lang. To
find out similar bugs in the Configuration project, we set
o = StringEscapeUtils.escapeJava and issue the query

SELECT b FROM ALL WHERE INTERSECT?(
PROJ (b, org/apache/commons/lang/*), ‘a')

to search for all bugs in the database that match pat. This
query returns four bugs. It returns Lang-421, the bug that
motivated our search. The second bug is Configuration-408,
where forward slashes were escaped when a URL was saved
as a property name. Studying the description, we confirmed
that StringEscapeUtils.escapeJava() caused the problem.
The third bug, Configuration-272, concerns incorrectly
escaping the ’,” character; the class StringEscapeUtils still
exhibits this problem. Manually examining the last bug,
Lang-473, confirms that it duplicates Lang-421. It is our
experience with bugs like these that led us to add the simple
“regex query” to our suite of predefined queries.

3.4.1 Limitations

Overcoming instrumentation overhead is an ongoing chal-
lenge for OSCILLOSCOPE. For example, stress-testing Find-
Bugs revealed five-fold slowdown. Our first, and most impor-
tant, countermeasure is our chop operator, described above
in Section 3.1. In our experience, statement-granular tracing
would be infeasible without it. Longer term, we plan to em-
ploy Larus’ technique to judiciously place chop points [18].
Another direction for reducing overhead is to use sampling,
then trace reconstruction, as in Cooperative Debugging [19];
the effectiveness of this approach depends, of course, on
OSCILLOSCOPE garnering enough participation to reliably
acquire enough samples to actually reconstruct traces. Cur-
rently, OSCILLOSCOPE handles only sequential programs.
To handle concurrent programs, we will need to add thread
identifiers to traces and explore the use of vector distance on
interleaved traces.

4. Evaluation

This evaluation shows that OSCILLOSCOPE does find similar
bugs and, in so doing, finds a generally useful class of suffix-
based queries. It measures how OSCILLOSCOPE scales and
demonstrates the accuracy of basing search on execution
traces.

To evaluate OSCILLOSCOPE, we collected method-level
traces and studied bugs reported against the Apache Commons
(2005-2010): comprising 624153 LOC and 379163 lines of
comment, and Rhino (2001-2010): comprising 205775 LOC
and 34741 lines of comment projects. We chose these projects
because of their popularity. In most cases, reporters failed
to provide a test case to reproduce the bug. Even with a test
case, recompiling an old version and reproducing the bug
was a manual task that consumed 5 minutes on average. This
explains why OSCILLOSCOPE’s trace database contains 656
of the 2390 bugs reported against Apache Commons and 221
of the 942 bugs reported against Rhino. For each bug, we
recorded related information from the bug tracking system
such as source code, the fix (if available), and developer
comments. Our database currently contains 877 traces (one
trace per bug) and its size is 43.1 MB. The minimum,
maximum, mean, and variance of the trace lengths in the
database are 2, 50012, 5431.1, and 6.68 x 107.

Experimental Procedure In general, we do not know [[b],
those bugs that are actually similar to each other (Equation 2).
We manually approximated [5] from [b], an OSCILLOSCOPE
result set, in two ways. First, we checked whether two
bugs shared a common error-triggering point, the program
point at which a bug first causes the program to violate its
specification. We studied every candidate pair of bugs that
OSCILLOSCOPE reported to be similar for at most 10 minutes.
For example, we deemed Rhino-217951 and 217965 to be
similar because a Number.toFixed() failure triggered each
bug. Second, we recorded as similar any bugs identified
as such by a project’s developers. For example, a Rhino
developer commented in Rhino-443590’s report that it looks
like Rhino-359651. Given our limited time and knowledge of
the projects, we often could not determine whether two bugs
are, in fact, similar. When we could not determine similarity,
we conservatively deemed the bugs dissimilar. This procedure
discovers false positives, not false negatives. To account for
false negative, we introduce the relative recall measure in
Section 4.1 next. We discuss our methodology’s construct
validity in Section 4.5.

Using this experimental procedure, we found that similar
bugs comprise a substantial portion of bugs we have collected
to date: % ~ 31%. 74 of the 273 similar bugs are identical,
caused by duplicate bug reports; the majority, however, are
nontrivially similar. Since we conjecture that the number of
ways that humans introduce errors is finite and our database
contains field bugs, we expect the proportion of similar bugs
to increase as our database grows.

4.1 Can OSCILLOSCOPE Find Similar Bugs?

To show that OSCILLOSCOPE accurately finds similar bugs
and to validate the utility of a default query distributed with
OSCILLOSCOPE, we investigate the precision and recall of
suffix queries issued against the 221 bug traces we harvested
from the Rhino project. We queried OSCILLOSCOPE with 48

unresolved Rhino bugs. We found similar bugs for 14 of these
bugs, under our experimental procedure. When computing
the measures below, we used this result as our oracle for [5].

When we do not deeply understand a bug, matching trace
suffixes is a natural way to search for bugs, since many bugs
cause termination. This insight underlies the suffix query we
first introduced in Section 2. For suffixes of length len, the
suffix query is

SELECT bug FROM Rhino WHERE

SUBSET? (tbug[len], bug[len], distance).

Two parameters control suffix comparison: length and
edit distance. We conducted two experiments to show how
these parameters impact the search for similar bugs. In the
first experiment, we fix the suffix length at 50 and increase
the allowed Levenshtein distance. In the second experiment,
we fix the Levenshtein distance to 10 and vary the suffix
length. Table 1 depicts the results of the first experiment,
Table 2 those of the second. We report the data in Table 2 in
descending suffix length to align the data in both tables in
order of increasing match leniency.

In both experiments, we are interested in the number of
queries for unresolved bugs that match a resolved bug, as
these might help a developer fix the bug. Recall that R is the
set of resolved bugs (Section 3) and R;, (Equation 6) is the
set of resolved bugs similar to b. In the second column, we
report how many unresolved bugs match any resolved bugs.
For this purpose, we define Ug = {b € U | R, # 0}, then, in
column three, we report the percentage of unresolved bugs
that match at least one resolved bug.

To show that our result sets are accurate, we compute their
average size across all unresolved bugs as

L IRy
U

=[Ry|. (8)

In the fourth column, we report this average, then because R
might grow to be very large, we report the average cardinality
of |Rp| as a percentage of |R|. This is the average number
of resolved bugs a developer would have to examine for
clues he might use to solve an unresolved bug. It is a proxy
for developer effort. In this experiment, even the two most
lenient matches — Levenshtein distance 30 and 25 length
suffixes — do not burden a developer with a large number of
potentially similar bugs. For Rhino, the maximum number of
bugs returned by OSCILLOSCOPE for a bug is six. The effort
to analyze each result set is further mitigated by the fact that
OSCILLOSCOPE returns ranked result sets, in order of edit
distance.

Next, we report the precision and recall of OSCILLO-
SCOPE over R, the resolved bugs. When TP denotes true
positives, FP denotes false positives, and FN denotes false
negatives, recall that

TP TP

_— recal= ———. (9)
TP 4 FP TP +FN

precision =

In our context, we have

[l [b]] [l [B]]

precision = ———— recall = ———. (10)

|[]] 1]
To restrict precision to R, we define
b 1 if[plNX =0 1
respr(X, b) = 7“[[1"]][2}%()?‘ otherwise. an
then, in column four, we report the average respr
1

— Y respr(R,b) (12)

Ul 5t

which we manually compute via our experimental procedure.
The majority, %, of the unresolved bugs in our Rhino data
set are unique. These unique bugs dominate the average respr
at lower edit distance and longer suffix length. When distance
increases from 10 to 20, and suffix length drops from 50 to
25, the average respr drops dramatically. The reason is that
Rhino, a JavaScript interpreter, has a standard exit routine.
When a program ends without runtime exceptions, Rhino
calls functions to free resources. Most the Rhino traces end
with this sequence which accounts for OSCILLOSCOPE’s FPs
and decreases the average respr. In general, both Table 1 and
Table 2 show how the greater abstraction comes at the cost of
precision.

Our experimental procedure is manual and may overstate
recall because we do not accurately account for FNs; ac-
curately accounting for FNs would require examining all
traces. Rather than directly report recall (Equation 10), we
over-approximate it with relative recall:

1 if [p] ={b}
relrecall(b) =< 1 if [b] N [b] — {b} #0 (13)
0 otherwise,

which measures how often OSCILLOSCOPE returns useful
results. Relative recall scores one whenever a bug 1) is
unique or 2) has at least one truly similar bug. Because
V[b],b € [b] N[b], we need to test these two cases separately
to distinguish between returning only b when b is, in fact,
unique in the database from returning b, but failing to return
other, similar bugs when they exist. In contrast to precision,
relative recall does not penalize the result set for FPs; in
contrast to recall, it does not penalize the result set for FNs.
In practice, relative recall can be manually verified, since we
only need to find a counter-example in [b] to falsify the first
condition and checking the second condition is restricted by
|[b]], whose maximum across our data set is 11.
As with precision, we restrict relative recall

1 if [p] ={b}
relrecall(X,b) =< 1 if ([p]N[b] —{b})NX #O
0 otherwise.

(14)

Ukl |Ug| m Ryl Average Average Average
Distance v b IR| Respr(R,b) Relrec(R,b) F-score(R,b)
0 3 63% 008 0.05% 0.98 0.75 0.85
10 12 25.0% 0.67 0.39% 0.93 0.94 0.93
20 18 375% 129 0.75% 0.82 0.96 0.88
30 31 64.6% 229 1.32% 0.56 0.98 0.71

Table 1: Measures of the utility of our approach as a function of increasing Levenshtein distance and fixed suffix length 50,
Vb € U; Ug is the subset of the unresolved bugs U for which OSCILLOSCOPE finds a similar resolved bug; LRl i the percentage

_ U]
of unresolved bugs that are similar to a resolved bug; |R;| is the average number of resolved bugs returned for each unresolved
bug b; since R will vary greatly in size, we report Rl the size of each result set as a percentage of the resolved bugs; the

R >

meaning of the measures Respr, Relrec and restricted F-score are defined in the text below.

Suffix Ukl |UR| &y TRyl Average Average Average
Length R [U] b IR| Respr(R,b) Relrec(R,b) F-score(R,b)
200 2 42% 0.08 0.05% 0.97 0.73 0.83
100 5 104% 0.19 0.11% 0.97 0.79 0.87
50 12 250% 0.67 0.39% 0.93 0.94 0.93
25 24 50.0% 1.83 1.06% 0.68 0.96 0.80

Table 2: Measures of the utility of our approach as a function of decreasing suffix length and fixed distance threshold 10, Vb € U;
for a detailed discussion of the meaning of the first four columns, please refer to the caption of Table 1; the remaining columns

are defined in the text below.
and, in column five, we report its average,

1
—) relrecall(R,b). (15)
Ul it

By definition two paths are different. At edit distance zero, a
bug can only match itself, possibly returning duplicate bug
reports. Many paths differ only in which branch they took
in a conditional and thus OSCILLOSCOPE can match them
even with a small edit distance budget, which accounts for
the large rise in relative recall moving from an edit distance
budget of 0 to 10. Minor differences accumulate when longer
suffixes of two traces are compared. The loss of irrelevant
detail accounts for the large rise in relative recall moving
from suffix length 100 to 50.

The F-score is the harmonic mean of precision and recall.
Here we define it using restricted precision and relative recall:

2 -relrecall(X,b) - respr(X,b)
relrecall(X,b) +respr(X,b)

(16)

Column six in both tables reports this measure.

Unique bugs dominate the first Levenshtein measurement.
At distance zero, OSCILLOSCOPE returned five bugs in
total. Among the 34 unique bugs, OSCILLOSCOPE found
a similar bug for only one of them. At suffixes of length 200,
OSCILLOSCOPE returned two bugs in total and both are true
positives. The distance zero and suffix length 200 queries are
more precise, but also more susceptible to FNs, because they
return so few bugs. Correctly identified, unique bugs increase

relative recall. With the increase of distance or decrease in
suffix length, OSCILLOSCOPE finds more potentially similar
bugs, at the cost of FPs. At distance 10 and suffixes of length
50, OSCILLOSCOPE found similar bugs for 11 of the non-
unique bugs, and returned only one FP for a unique bug.

These tables demonstrate the utility of OSCILLOSCOPE.
Its query results often contain resolved bugs that may help
solve the open, target bug. They are small and precise and
therefore unlikely to waste a developer’s time. The second
most strict measurement, edit distance 10 in Table 1 and suffix
length 50 in Table 2 is the sweet spot where OSCILLOSCOPE
is sufficiently permissive to capture interesting bugs while
not introducing too many FP.

The six FPs have similar test cases, but their errors
are triggered at different program points. For instance,
Rhino-567484 and 352346 have similar test cases that con-
struct and print an XML tree. A problem with XML construction
triggers 567484, while an error in XML . toXMLString() trig-
gers 352346. Two of FN occurred because the distance thresh-
old was too low. At distance 20, OSCILLOSCOPE matches
these two bugs without introducing FPs. Logging calls, us-
ing VMBridge, separate these two bugs from their peers and
required the additional 10 edits to elide. We failed to find
similar bugs for 496540 and 496540 because the calls made
in Number.toFixed() changed extensively enough to disrupt
trace similarity. To reduce our FP and FN rates, we plan to
investigate object-sensitive dynamic slicing and automatic
a-renaming which, given trace alignment, renames symbols,
here method names, in order of their appearance. To handle

FNs like those caused by the interleaving of new calls such
as logging, we intend to evaluate trace embedding, i.e. de-
termining whether one trace a subsequence of another, as an
additional distance metric.

4.2 How Useful are the Results?

In this section, we show how OSCILLOSCOPE can help a
programmer fix a bug by identifying bugs similar to that bug.
To do so, we issue a suffix query for each bug. The query
Suffix-query

SELECT bug FROM ALL WHERE
SUBSET? (tbug[50], bug[50], 30)

returns a distance-ranked result set for tbug. We used trace
suffixes of length 50 because OSCILLOSCOPE performed best
at this length (Section 4.1). We then manually examined the
target bug and the bug in the result set with the smallest dis-
tance from the target bug, using our experimental procedure.
As a degenerate case of bug similarity, OSCILLOSCOPE
effectively finds duplicate bug reports and helps keep a bug
database clean. OSCILLOSCOPE reported 33 clusters of du-
plicate bug reports, 28 of which the project developers had
themselves classified as duplicates. We manually examined
the remaining five and confirmed that they are in fact dupli-
cates that had been missed. We have reported these newly-
discovered duplicates to the project maintainers. So far, one
of them, (JXPATH-128, 143), has been confirmed and closed
by the project maintainers. We have yet to receive con-
firmations on the other four: Configuration-30 and 256,
Collections-100 and 128, BeanUtils-145 and 151, and
Rhino-559012 and 573410. Next, we discuss a selection of
interesting, similar bugs returned by Suffix-query.
OSCILLOSCOPE is particularly effective at finding API
misuse bugs. From the BeanUtils project, Suffix-query
identified as similar BeanUtils-42, 117, 332, 341, and 372,
which all incorrectly try to use BeanUtils in conjunction with
non-public Java beans. Upon seeing a fix for one of these,
even a novice could fix the others. Configuration-94 and
222 describe bugs that happen when a new file is created
without checking for an existing file. Configuration-94
occurs in AbstractFileConfiguration.save() and 222
in the PropertiesConfiguration constructor. Their fixes
share the same idea: check whether a file exists before
creating it. Lang-118 and 131 violate preconditions of
StringEscapeUtils.unescapeHtml(). Lang-118 found that
StringEscapeUtils does not handle hex entities (prefixed
with ’0x’), while 131 concerns empty entities. Both fixes
check the input: seeing one, a developer would know to write
the other. Lang-59 (resolved) and Lang-654 (unresolved) de-
scribe the problem that DataUtils.truncate does not work
with daylight savings time. Studying Lang-564, we found its
cause was a partial (i.e. bad) fix of Lang-59. Developers of
Lang confirmed this finding. BeanUtils-115 is the problem
that properties from a DynaBean are not copied to a standard
Java bean. In BeanUtils-119, NoSuchMethodException is

180

==Cluster1 = Cluster2 P
160 >
-® Cluster3 = Cluster 4 g
b’
140 71
<@-Cluster 5 Cluster 6

[
N
o

[
1<)
=]

0
S

Time to completion (s)
g

B
=)

20

Database size (millions)

Figure 13: The effect of database size and Hadoop cluster on
query time; The six Hadoop cluster settings vary in number
of hosts, total memory and number of CPUs, as described in
the text.

thrown when setting value to a property with name "aRa".
The root cause for both bugs is the passing of a parameter
that violates Java bean naming conventions: when the second
character of a getter/setter method is uppercase, the first must
also be. Again, from a fix for either, the fix for the other is
immediate.

In addition to identifying bug pairs such as those we just
discussed, OSCILLOSCOPE efficiently clusters unresolved
bugs. In Rhino, OSCILLOSCOPE clustered seven unresolved
bugs — 444935, 443590, 359651, 389278, 543663, 448443,
and 369860. These bugs all describe problems with regular
expressions. The project developers themselves deemed some
of these bugs similar. Problems in processing XML trees
causes Rhino-567484, 566181 and 566186. When processing
strings, Rhino throws a StackOverflowException in both
Rhino-432254 and 567114.

Although we found interesting, similar bugs comparing
only suffix traces, we also learned some of the deficiencies of
this strategy. When a bug produces erroneous output and does
not throw an exception, the location of the error is usually
not at the end of the execution trace. Suffix queries produce
FPs on such bugs, especially when they share a prefix be-
cause their test cases are similar. The bug Configuration-6,
improper handling of empty values, and Configuration-75,
the incorrect deletion of XML subelements, formed one such
FP. Suffix comparison can miss similar bugs when a bug oc-
curs in different contexts. The incorrect implementation of
ConfigurationUtils.copy() caused Configuration-272,
283 and 323. These three bugs differ only in the location
of their call to this buggy method. The suffix operator alone
failed to detect these bugs as similar, because the context of
each call is quite different.

Database Size

Time to completion (s)

(million) 1,4GB4CPU 1,6GB8CPU 2,10GB 12CPU 3, 14GB 16CPU 4, 16GB 20CPU 5, 144GB 38CPU
1 38.2 28.6 23.1 21.1 18.9 14.2
2 72.3 41.3 32.8 242 22.5 18.3
3 104.7 53.8 48.4 34.6 28.6 20.2
4 140.7 70.1 58.4 494 352 25.7
5 171.3 81.2 64.5 53.5 479 28.0

Table 3: Measures of OSCILLOSCOPE’s query processing time against different sizes of databases with different Hadoop cluster
settings; The Hadoop cluster setting “x, yGB zCPU” denotes a cluster with x nodes, a total of y GB of memory, and z CPUs.

4.3 Scalability

Our central hypothesis, that unique bugs are rare against
the backdrop of all bugs, means that OSCILLOSCOPE will
become ever more useful as its database grows, since it will
become ever more likely to find bugs similar to a target bug.
This raises performance concern: how much time will it take
to process a query against millions of traces. To gain insight
into how the size of bug database and Hadoop cluster settings
impact the query time, we conducted a two-dimension stress
testing. In the first dimension, we fix the database size and
increase Hadoop cluster resources. In the second dimension,
we fix the Hadoop cluster and vary the database size. We
replicated our 877 traces to create a database with millions of
traces. We used the Suffix-query as the candidate query in
the experiment. For each setting, we issued Suffix-query five
times and computed the average time to completion. Table 3
depicts the results. The first column lists the database size,
which ranges from one to five million traces. The rest of the
columns show the time to process the query for each each
cluster configuration. The Hadoop cluster setting is expressed
as the following: “x, yGB zCPU” denotes a cluster with x
nodes, a total of y GB of memory, and z CPUs. The settings
we used were

Cluster 1 1, 4GB 4CPU
Cluster2 1, 6GB 8CPU
Cluster 3 2, 10GB 12CPU
Cluster4 3, 14GB 16CPU
Cluster 5 4, 16GB 20CPU
Cluster6 5, 144GB 38CPU

Figure 13 shows that the query processing times grow
linearly with the increase of database size for all the settings,
the expected result which confirms that all the nodes in the
cluster were used. Figure 13 also shows that query times drop
more dramatically for large database sizes than for small ones.
This is because the performance gain gradually overcomes
the network latency as the workload grows. Figure 13 clearly
demonstrates that OSCILLOSCOPE’s query processing will
take less time as a function of the nodes in its Hadoop cluster.

4.4 Execution Trace Search Accuracy

Execution traces accurately capture program behavior, but
are expensive to harvest and store. To show this cost is worth

paying, we compare the execution trace search accuracy
against the accuracy of vector and stack trace searches.

Vector Researchers have proposed a vector space model
(VSM) to measure the similarity of execution traces [29]. To
compare the VSM metric against OSCILLOSCOPE’s use of
edit distance over execution traces, we repeated the Rhino
experiment in Section 4.1 using VSM. The VSM approach
transforms execution traces to vectors, then computes their
distance'. In the experiment, we tuned two parameters, trace
length and distance threshold of the VSM algorithm to op-
timize the respr and relrecall results. We varied the trace
lengths using suffixes of length 25, 50, 100, 200, and un-
bounded. For the distance threshold, we tried [0.5,1.0] in
increments of 0.1. Suffix length 50 and distance threshold
0.9 was the sweet spot of the VSM metric where it achieved
0.85 respr and 0.90 relrecall, for an F-score of 0.87. At suffix
of length 50 and edit distance 10, OSCILLOSCOPE outper-
forms VSM, with 0.93 respr and 0.94 relrecall for and 0.93
F-score. We hypothesize the reason is that the VSM model
does not consider the temporal order of method invocations.
The search for similar bugs requires two operations, search
and insertion. VSM requires the recomputation of the vector
for every trace in the database whenever an uploaded trace
introduces a new method, but it can amortize this insertion
cost across searches, which are relatively efficient because
they can make use of vector instructions. In contrast, insertion
is free for OSCILLOSCOPE, but search operations require edit
distance computations.

Are Execution Traces Necessary? The OSCILLOSCOPE
database contains both stack and execution traces. Execution
traces are more precise than stack traces, but more expensive
to harvest. Stack traces are cheaper to collect, but not always
available and less precise. For example, a stack trace is usually
not available when a program runs to completion but produces
incorrect output; they are less precise because they may not
capture the program point at which a bug occurred or when
they do, they may capture too little of its calling context. Here,
we quantify this difference in the precision to shed light on
when the effort to harvest execution traces might be justified.

' Users of OSCILLOSCOPE, who wish to use VSM’s distance function, can
implement it as a custom distance function.

70 Rhino bugs in our database have stack traces. 33/70
bugs are similar to at least one other bug, under our exper-
imental procedure. In the experiment, we issued OSCILLO-
SCOPE queries to search for these similar bug pairs, one
restricted to stack traces and the other to execution traces.
The stack trace query was

SELECT bl, b2 FROM Rhino WHERE SUBSET?(
PROJ (b1, stack), PROJ(b2, stack)
).

In the query, PROJ (b1, stack) extracts the stack trace of a
bug. We ranked each result set in ascending order by distance.
We deemed the closest 50 to “match” under OSCILLOSCOPE,
since manually examining the 50 pairs was tractable and each
of the 70 bugs appears in at least one of these 50 pairs in both
result sets. We examined each of these 50 bug pairs to judge
whether it is a TP or an FP. Of the remaining pairs, which we
deemed non-matches, we examined all the FN.

The stack trace result set contains 26 TP, 24 FP (the 50
that OSCILLOSCOPE matched), and 6 FN (from among the
remaining pairs). The fact that most stack traces are similar
accounted for nearly half the FPs. The largest distance over all
50 pairs is only 5, compared with 35 for the execution traces.
We examined the stack traces of the 6 FNs. The distance be-
tween Rhino-319614 and 370231 is large because the bugs be-
long to different versions of Rhino between which the buggy
method was heavily reformulated. Both Rhino-432254 and
567114 throw stack overflow exceptions whose traces differ
greatly in length. Because Rhino-238699’s stack trace does
not contain the error-triggering point, Compile.compile(),
it does not match 299539. The other three FN have distances
8, 14, and 14, so FPs crowd them out of the top 50 pairs.

The execution trace result set contains 41 TP, 9 FP, and 1
FN. False positives appear when the edit distance exceeds 20.
The only FN is the pair Rhino-319614 and 370231, which is
also a FN in the stack trace result set and for the same reason:
the relevant methods were extensively rewritten.

The stack trace result set matched similar bugs with 0.52
respr, 0.81 relrecall (See Section 4.1) and 0.63 F-score; the
execution trace result set achieved 0.82 respr, 0.98 relrecall,
and 0.89 F-score. These results make clear that the cost of
instrumenting and running executable to collect execution
traces can pay off, especially as a fallback strategy when
queries against stack traces are inconclusive.

4.5 Threats to Validity

We face two threats to the external validity of our results.
First, we evaluated OSCILLOSCOPE against bugs collected
from the Rhino and Apache Commons projects, which might
not be representative. Second, most of the bug reports we
gathered from these projects lack bug-triggering test cases.
Without test cases, we were unable to produce traces for
almost 70% of the bugs in these projects. Our evaluation
therefore rests on the remaining 30%. It may be that those
bugs whose reports contain a test case are not representative.

These two threats combine to shrink the number of traces
over which OSCILLOSCOPE operates.

Nonetheless, our results are promising. We have conjec-
tured that unique bugs are rare, in the limit, as a trace database
contains all bug traces. The fact that we have already found
useful examples of similar bugs in a small population lends
support to our conjecture. Not only is the population small,
but it contains only field bugs. In particular, it lacks predeploy-
ment bugs, which are resolved during initial development. We
contend that these bugs are more likely to manifest common
misunderstandings and be more similar than field defects.

Our evaluation is also subject to two threats to its con-
struct validity. First, one cannot know [b] in general. We
described how we manually approximated [b] in our experi-
mental procedure above. Project developers identified 43%
of these bugs as similar to another bug. For the remaining
57%, as with any manual process involving non-experts, our
assessments may have been incorrect. Second, our database
currently contains method, not instruction, granular traces. To
the extent to which a method-level trace fails to capture bug
semantics, our measurements are inaccurate. Our evaluation
data is available at http://bql.cs.ucdavis.edu.

5. Related Work

This section opens with a discussion of work that, like
OSCILLOSCOPE, leverages programming knowledge. Often,
one acquires this knowledge to automate debugging, which
we discuss next. We close by discussing work on efficiently
analyzing traces.

Reuse of Programmer Knowledge Leveraging past so-
lutions to recurrent problems promises to greatly improve
programmer productivity. Most solutions are not recorded.
However, the volume of those that are recorded is vast and
usually stored as unstructured data on diverse systems, in-
cluding bug tracking systems, SCM commit messages, and
mailing lists. The challenge here is how to support and pro-
cess queries on this large and unwieldy set of data sources.
Each project discussed below principally differs from each
other, and OSCILLOSCOPE, in their approach to this problem.

To attack the polluted, semi-structured bug data problem,
DebugAdvisor judiciously adds structure, such as construct-
ing bags of terms from documents, and they define a new sort
of query, a fat query, that unites structured and unstructured
query data [1]. In contrast, OSCILLOSCOPE uses execution
traces to query bug data. Thus, our approach promises fewer
false positives, but may miss relevant bugs, while DebugAd-
visor will return larger result sets that may require human
processing. Indeed, Ashok et al. note “there is much room
for improvement in the quality of retrieved results.”

When compilation fails, HelpMeOut saves the error mes-
sage and a snapshot of the source [11]. When a subsequent
compilation succeeds, HelpMeOut saves the difference be-
tween the failing and succeeding versions. Users can enter
compiler errors into HelpMeOut to search for fixes. In con-

http://bql.cs.ucdavis.edu

trast, OSCILLOSCOPE handles all bug types and compares
execution traces, not error messages. Dimmunix, proposed by
Jula et al., prevents the recurrence of deadlock [15]. When a
deadlock occurs, Dimmunix snapshots the method invocation
sequence along with thread scheduling decisions to form a
deadlock signature.

Dimmunix monitors program state. If a program’s state
is similar to a deadlock signature, Dimmunix either rolls
back execution or refuses the lock request. Dimmunix targets
deadlock bugs, while OSCILLOSCOPE searches for similar
bugs across execution traces of all types of bugs.

Code peers are methods or classes that play similar roles,
provide similar functionality, or interact in similar ways. A
recurring fix is repeatedly applied, with slight modifications,
to several code fragments or revisions. Proposed by Ngueyn
et al., FixWizard syntactically finds code peers in source code,
then identifies recurring fixes to recommend the application
of these fixes to overlooked peers [23]. OSCILLOSCOPE uses
traces, which precisely capture bug semantics, to search for
similar bugs in a database of existing bugs.

Automated Debugging Detecting duplicate bug reports
is a subproblem of finding similar bugs. Runeson et al. use
natural language processing (NLP) to detect duplicates [27].
Comments in bug reports are often a noisy source of bug se-
mantics, but could complement OSCILLOSCOPE’s execution
trace-based approach. In a recent work, Wang et al. augment
the NLP analysis of bug reports with execution informa-
tion [29]. They record whether or not a method is invoked
during an execution into a vector. We compare Wang et al.’s
approach to ours in Section 4.4.

Bug localization and trace explanation aim to find the
root cause of a single bug or identify the likely buggy code
for manual inspection [2, 4, 7, 8, 12—14, 16, 20, 21, 30-32].
OSCILLOSCOPE helps developers fix a bug by retrieving
similar bugs and how they were resolved. OSCILLOSCOPE
and bug localization complement each other. A root cause
discovered by bug localization may lead to the formulation
of precise OSCILLOSCOPE queries for similar, resolved bugs;
storing only trace subsequence identified by a root cause can
also save space in the database.

Efficient Tracing and Analysis Researchers have proposed
query languages over traces for monitoring or verifying
program properties [25, 26]. Goldsmith et al. propose the
Program Trace Query Language (PTQL) for specifying and
checking a program’s runtime behaviors [6]. A PTQL query
instruments and runs a program to check whether or not
a specified property is satisfied at runtime. Martin et al.’s
Program Query Language (PQL) defines queries that operate
over event sequences of a program to specify and capture
its design rules [22]. PQL supports both static and dynamic
analyses to check whether a program behaves as specified.
Olender and Osterweil propose a parameterized flow analysis
for properties over event sequences expressed in Cecil, a
constraint language based on quantified regular expressions

(QRESs) [24]. These three query languages are designed for
analyzing a single, property-specific trace; OSCILLOSCOPE
collects raw, unfiltered traces and tackles the bug similarity
problem in the form of trace similarity.

6. Conclusion and Future Work

Debugging is hard work. Programmers pose and reject hy-
potheses while seeking a bug’s root cause. Eventually, they
write a fix. To reuse this knowledge about a bug, we must
accurately find semantically similar bugs. We have proposed
comparing execution traces to this end. We have defined and
built OSCILLOSCOPE, a tool for searching for similar bugs,
and an open infrastructure — trace collection, a flexible query
language BQL, a query engine based on Hadoop, database,
and both a web-based and plugin user interface — to sup-
port it. BQL allows a user to 1) define bug similarity and
2) use that definition to search for similar bugs. We evalu-
ated OSCILLOSCOPE on a collection of bugs from popular
open-source projects. Our results show that OSCILLOSCOPE
accurately retrieves relevant bugs: When querying unresolved
bugs against resolved bugs in the Rhino project it achieves
93% respr, 94% relrecall for an F-score of 0.93 (Section 4.1).

OSCILLOSCOPE’s database will grow from our activities
and the contributions of others. We will use it to study
questions such as “Can we quantify the precision-scale
trade-off of varying trace granularity?”, “What proportion
of bugs can only be captured at statement granularity?”, and
“Which parts of the system do few buggy traces traverse?”
We also plan to add the traces of correct executions to
OSCILLOSCOPE’s database, which currently contains only
buggy executions and compare them. We intend to explore
adding call context to produce execution trees; because
OSCILLOSCOPE is a general and flexible framework, adding
this support requires only modifying instrumentation and
defining a distance measure over execution trees. In short, we
intend to enhance and further experiment with our framework
to gain additional insight into “What makes bugs similar?”.

OSCILLOSCOPE is an open project. We invite readers
to use OSCILLOSCOPE and help us make it more general.
Please refer to our website http://bgl.cs.ucdavis.edu for
tutorials and demonstrations.

Acknowledgments

This research was supported in part by NSF (grants 0917392
and 1117603) and the US Air Force (grant FA9550-07-1-
0532). The information presented here does not necessarily
reflect the position or the policy of the government and no
official endorsement should be inferred.

References

[1] B. Ashok, J. Joy, H. Liang, S. Rajamani, G. Srinivasa, and
V. Vangala. DebugAdvisor: A recommender system for de-
bugging. In Proceedings of the 17th Joint Meeting of the
European Software Engineering Conference and the ACM SIG-

http://bql.cs.ucdavis.edu

SOFT International Symposium on the Foundations of Software
Engineering, 2009.

[2] L. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler.
Explaining counterexamples using causality. In Proceedings of
the International Conference on Computer Aided Verification,
2009.

[3] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and
T. Zimmermann. What makes a good bug report? In Proceed-
ings of the 16th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, 2008.

[4] P. Dhoolia, S. Mani, V. S. Sinha, and S. Sinha. Debugging
model-transformation failures using dynamic tainting. In
Proceedings of the 24th European Conference on Object-
Oriented Programming, 2010.

[5] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent
behavior: A general approach to inferring errors in systems
code. In Proceedings of the ACM Symposium on Operating
Systems Principles, 2001.

[6] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries
over program traces. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2005.

[7] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error
explanation with distance metrics. International Journal on
Software Tools for Technology Transfer, 8(3):229-247, 2006.

[8] A. Groce and W. Visser. What went wrong: Explaining
counterexamples. In SPIN Workshop on Model Checking of
Software, 2003.

[9] Z. Gu, E. Barr, and Z. Su. BQL: Capturing and reusing de-
bugging knowledge. In Proceedings of the 33rd International
Conference on Software Engineering (Demo Track), 2011.

[10] D. Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[11] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer.
What would other programmers do: Suggesting solutions to
error messages. In Proceedings of the 28th International
Conference on Human Factors in Computing Systems, 2010.

[12] K. Hoffman, P. Eugster, and S. Jagannathan. Semantics-aware
trace analysis. In Proceedings of the 2009 ACM SIGPLAN

Conference on Programming Language Design and Implemen-
tation, 2009.

[13] E. W. Host and B. M. Ostvold. Debugging method names.
In Proceedings of the 23rd European Conference on Object-
Oriented Programming, 2009.

[14] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the
24th International Conference on Software Engineering, 2002.

[15] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock
immunity: Enabling systems to defend against deadlocks. In
Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, 2008.

[16] S. Kim, K. Pan, and E. J. Whitehead, Jr. Memories of bug
fixes. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2006.

[17] A. Ko and B. Myers. A framework and methodology for
studying the causes of software errors in programming systems.
Journal of Visual Languages & Computing, 16(1-2):41-84,
2005.

[18] J. R. Larus. Whole program paths. In Proceedings of the
1999 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 1999.

[19] B. Liblit. Cooperative Bug Isolation. Springer-Verlag, 2007.

[20] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation via
remote program sampling. In Proceedings of the 2003 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2003.

[21] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan.
Scalable statistical bug isolation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2005.

[22] M. Martin, B. Livshits, and M. S. Lam. Finding application er-
rors and security flaws using PQL: A program query language.
In Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2005.

[23] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi,
and T. N. Nguyen. Recurring bug fixes in object-oriented
programs. In Proceedings of the 32nd International Conference
on Software Engineering, 2010.

[24] K. Olender and L. Osterweil. Cecil: A sequencing constraint
language for automatic static analysis generation. [EEE
Transactions on Software Engineering, 16(3):268-280, 1990.

[25] G. Pothier and E. Tanter. Summarized trace indexing and query-
ing for scalable back-in-time debugging. In Proceedings of the
25th European Conference on Object-Oriented Programming,
2011.

[26] G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient debug-
ging. In Proceedings of the 22nd ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, 2007.

[27] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In
Proceedings of the 29th International Conference on Software
Engineering, 2007.

[28] A. Schréter, N. Bettenburg, and R. Premraj. Do stack traces
help developers fix bugs? In Proceedings of the 7th IEEE
Working Conference on Mining Software Repositories, 2010.

[29] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach
to detecting duplicate bug reports using natural language and
execution information. In Proceedings of the 30th International
Conference on Software Engineering, 2008.

[30] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Au-
tomatically finding patches using genetic programming. In
Proceedings of the 31st International Conference on Software
Engineering, 2009.

[31] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In Proceedings of the 7th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, 1999.

[32] X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. In Proceedings of the 28th
International Conference on Software Engineering, 2006.

	Introduction
	Illustrating Example
	Design and Realization of Oscilloscope
	User-Level Support
	BQL: A Bug Query Language
	Terminology
	The syntax of BQL
	Semantics

	Implementation
	Extending Oscilloscope with New Queries
	Limitations

	Evaluation
	Can Oscilloscope Find Similar Bugs?
	How Useful are the Results?
	Scalability
	Execution Trace Search Accuracy
	Threats to Validity

	Related Work
	Conclusion and Future Work

