On Version Control

Earl Barr
Department of Computer Science
University College London

March 2013

Programming Is Writing

» Programming is writing in a programming language.
> Like authors, programmers

> read more often then they write; and
» write for themselves and each other

Programming Is Writing

» Programming is writing in a programming language.
> Like authors, programmers

> read more often then they write; and
» write for themselves and each other

> Unlike authors, they're also writing instructions for a machine

A Cool Word

pa - limp - sest
/'pa-lomp-sest/
Noun
1. A manuscript or piece of writing material on which the original
writing has been effaced to make room for later writing.

2. Something reused or altered but still bearing visible traces of its
earlier form.

The Archimedes Palimpsest

Source Code as Palimpset

Like parchment, source code is constantly being worked and
reworked:

» refactored

> fixed

» extended

Source Code as Palimpset

Like parchment, source code is constantly being worked and
reworked:

» refactored
> fixed

» extended

Change and rework is a measure of the vitality of software

Version Control
» Tracks the history of edits

» Allows reverting changes
and cherry-picking

» Language independent

» Differs from back up

» Granularity

» Commit messages

» Copying data onto
other hardware is a
side-effect

Infeasible before the computer age

v

v

v

v

Goals

History of Version Control (VC)
Indispensable tool
Teach you about VC, focusing on Git

Pose research questions

Prehistory

Entirely manual:

cp file file.timestamp

» Still heavily used!

Prehistory

Entirely manual:

cp file file.timestamp

» Still heavily used!

» Microsoft Word is a case in point, despite its revision history

Prehistory

Entirely manual:

cp file file.timestamp

» Still heavily used!
» Microsoft Word is a case in point, despite its revision history

» Closer to backup: fine-grained, but no easy way to add commit
messages

Files, aka The Stone Age

» Source Code Control System (SCCS), 1972
» Revision Control System (RCS), 1982
» VAX/VMS, circa 1975

» At each write, (filename);(version); — (filename);(version + 1);

RCS and SCCS store delta, or changes, or commits in a subdirectory
of the source directory.

Set of Files and Sharing, the late Stone Age

» Co-commit a set of files, or changeset, instead of just a file
> In particular, directory trees

» Support for client-server, via NFS

Set of Files and Sharing, the late Stone Age

» Co-commit a set of files, or changeset, instead of just a file
> In particular, directory trees

» Support for client-server, via NFS
Concurrent Versions System (CVS), 1986

» Changeset not explicitly stored, but inferred from time window
> This time window is

> narrow because the changeset commit is automatic, but
» NOT ATOMIC!

Atomic Changesets and Sharing, aka The Bronze Age

SVN, 2000
» Changeset commited atomically and given a unique revision
number
» Built in, native network support

» Perforce, Visual SourceSafe, and many others

Star Topology

mit Bit (Writers)

Q- EQEE, P

Repository
(Object Store)

» Working copy is distinct from the repository, which contains
the object store.

» The “Commit bit"

Distribution, aka The Iron Age

» Co-commit sequences (ordered sets) of changesets aka
branches

» Totally ordered, within a branch
> Partially ordered, across branches

» Everyone has a repository, with the complete history

Distribution, aka The Iron Age

» Co-commit sequences (ordered sets) of changesets aka
branches
» Totally ordered, within a branch
> Partially ordered, across branches

v

Everyone has a repository, with the complete history

v

BitKeeper 1998, used by Linux in 2000
Git and Mercurial, 2005
Bazaar (2005), GNU Arch (2006), Darcs, SVK, others. . .

v

v

The BitKeeper license for the Linux kernel was withdrawn amid
claims that Andrew Tridgell had reverse-engineered the BitKeeper
protocols.

Distribution, aka The lron Age

The Age of Aquarius?

The history of version control is one of increasing fidelity of what

they record; from file, to sets of files (changesets) to, sequences of
changesets, aka branches.
What will the next step be?

> One idea | have is language-awareness

> Better exploitation of history

All Repositories Are Created Equal

Git Repository

git checkout

Working
Copy

git commit -a

git update-index git commit

Index
Staging

The object store is a database of commits; it is the history.

The Difference Distribution Makes

Repository
git checkout
@
git pull

Repository

git checkout

Must commit locally, before you can push remotely.

The Rapid Adoption of Distributed VC

> James Carville, 1992: “It’s the economy, stupid”

The Rapid Adoption of Distributed VC

» James Carville, 1992: “It's the economy, stupid”
» “It's the branching, stupid”, not distribution

» 60 projects

» 1.5 — 3.7 branches / month

> Retained star topology

» A Git object store is a set of branches

Branching

master
o Qo >Q Q Q@ —>0
\ nice feature
o Q
\ very_nice_feature
o Q
time

» Branches allow isolated work: they separate

» debugging and new feature development from
> integration, the handling concurrent work by others
» Allow offline work, as when flying

» “Cohesive and Isolated Development with Branches” at
FASE'12

3-way Merge

Branch Point Head Merge
) (=)
v Main
/)’k Head

» Use common ancestor to identify blocks changed in neither,
one or both

» At the time Git was written, SVN did not track the branch
point and had no way to identify it

3-way Merge

A" <> A7 » Flag those changed in both
as conflicts

NV

[=[s[e[%[3][=[o]=]>]

3-way Merge

A <> A” » Flag those changed in both
B” as conflicts
o
" <> D » "I'm an egotistical bastard,

and | name all my projects
after myself. First 'Linux’,
now 'git".” —Linus Torvalds

N

[=[s[e[%[3][=[o]=]>]

3-way Merge

A <> AV > Research Idea: Use dataflow
B” to find potential conflicts
’ through globals.

» Still a "stupid git”
approach: notifies the user
about changes in one or
the other

NV

[=[s[e[%[3][=[o]=]>]

Location Addressable Storage

Element at indesx & has value 431

0 | 2 3 4 5 3 7 8 9

\ A array of 10 integers

First element has value 99

Think array, notably the memory array.

Content-Addressable Storage

Associative array or hash
table

Use insecure hash function
to identify a changeset

This is how each repository
generate universal keys,
without communication.

Git better demonstrates
Linus Torvald's design
prowess than Linux

‘ Top hash ‘

N

Hash Hash
0 1

/N

Hash Hash H ash H
0-0 0-1
Data| [Data| Data Data
block| |block block| |block
1 2 3 4

The Git Ul

» What | Hate About Git — Hacker News
> Reddit: A Nightmage of Mixed Metaphors
» Why Git sucks and you'll use it anyways

Daily Use

Action SVN Git

Create Repo svnadmin create (repo) git init

Commit svn commit git commit -am "Fix
-m "Fix Bug" file Bug”

Diff svn diff git diff

Status svn status git status

Restore svn revert git checkout

add, rm, mv svn {add, rm, mv} git {add, rm, mv}

History svn log git log

Remote svn checkout (url) git clone (url)

http://git.or.cz/course/svn.html

http://git.or.cz/course/svn.html

Advanced Commands

> git bisect: provide a property test, then binary search history
> git rebase: edit history

VC and Empirical Software Engineering

» Data is usually expensive
» Countercurrent in the age of big data
» Physics depends on colliders that cost billions
» The core ESE difficulty

» VC has given SE

> A cheap source of plentiful data
» Perhaps also a street light

Continuous Integration

Continuous integration (Cl) is the practice, in software engineering,
of merging all developer workspaces with a shared mainline several
times a day.

v

Originated in extreme programming (XP)

v

Seeks to prevent "integration hell”
Adopted outside of XP
Jenkins, IBM's Jira

v

v

Cl build servers run tests

» upon each commit
» at a scheduled time

» after n commits

Research Questions
» What is the optimal granularity?

» Does that granularity vary with project?

Workflow and Promotion

A workflow is a set of conventions used to organize development.

» How is work divided up into tasks and assigned?

» How are the tasks integrated, i.e. promoted to main or
deployed?

Workflow and Promotion

A workflow is a set of conventions used to organize development.

» How is work divided up into tasks and assigned?

» How are the tasks integrated, i.e. promoted to main or
deployed?
> Is it a free-for-all?

Workflow and Promotion

A workflow is a set of conventions used to organize development.

» How is work divided up into tasks and assigned?
» How are the tasks integrated, i.e. promoted to main or
deployed?
> Is it a free-for-all?
> Is testing required?
> Is review required?

Not knowing an organization's workflow can get you fired!

My Workflow

1. Always work in a branch other than main!
2. Commit whenever

My Workflow

1. Always work in a branch other than main!
2. Commit whenever

» Caffeine run
> ltchy nose
> You feel like it

My Workflow

1. Always work in a branch other than main!
2. Commit whenever; this gives

» Fine-grained backup
» Frees me from thinking about beautiful commits
» However, ugly commits write an UGLY history

My Workflow

1. Always work in a branch other than main!
2. Commit whenever; this gives

» Fine-grained backup
» Frees me from thinking about beautiful commits
» However, ugly commits write an UGLY history

3. When ready to integration/promote, rebase

Rebasing Considered Harmful?

» Google “git rebase evil harmful”

» Public vs private branches

Rebasing

» For good, clean, understandable commits
» Clear, pertinent commits messages
» The project builds
» Conceptually cohesive: fusing and breaking commits
» Just as branches separate integration and development,
rebasing separates development from the concern of version
history

e

My Workflow

Always work in a branch other than main!
Commit whenever

When ready to integration/promote, rebase

When on a team, ask someone else to review prior to
promotion
» Fresh eyes

i The One True Way?

“The unexamined life is not worth living for a human being.”
—Socrates, Apology

Commit Messages

» What to write?
> It's the documentation problem redux.

» The Missing Links: Bugs and Bug-fix Commits
> iWhy not what!

Indispensible Tool Redux

git bisect
DVC gives fine-grained, semantic back-up nearly for free
Good commit messages help comprehension and navigation;

Commits define sets of files and methods whose co-commit can
help navigation.

Continuous Integration

Code Review Support — Gerrit

Git Resources

» Wikipedia, of course

» For you poor misguided Windows users, there is TortoiseGit

» Remember to upload your source and changes, not your keys or
passwords

» Slashdot: Github Kills Search After Hundreds of Private Keys
Exposed

i Questions?

	Introduction

