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Programming Is Writing

I Programming is writing in a programming language.
I Like authors, programmers

I read more often then they write; and
I write for themselves and each other

I Unlike authors, they’re also writing instructions for a machine
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A Cool Word

pa · limp · sest
/’pa-l@mp-sest/
Noun

1. A manuscript or piece of writing material on which the original
writing has been effaced to make room for later writing.

2. Something reused or altered but still bearing visible traces of its
earlier form.



The Archimedes Palimpsest



Source Code as Palimpset

Like parchment, source code is constantly being worked and
reworked:

I refactored

I fixed

I extended

Change and rework is a measure of the vitality of software
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Version Control

I Tracks the history of edits

I Allows reverting changes
and cherry-picking

I Language independent
I Differs from back up

I Granularity
I Commit messages
I Copying data onto

other hardware is a
side-effect

Infeasible before the computer age



Goals

I History of Version Control (VC)

I Indispensable tool

I Teach you about VC, focusing on Git

I Pose research questions



Prehistory

Entirely manual:

cp f i l e f i l e . t imestamp

I Still heavily used!

I Microsoft Word is a case in point, despite its revision history

I Closer to backup: fine-grained, but no easy way to add commit
messages
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Files, aka The Stone Age

I Source Code Control System (SCCS), 1972

I Revision Control System (RCS), 1982
I VAX/VMS, circa 1975

I At each write, 〈filename〉;〈version〉; → 〈filename〉;〈version + 1〉;

RCS and SCCS store delta, or changes, or commits in a subdirectory
of the source directory.



Set of Files and Sharing, the late Stone Age

I Co-commit a set of files, or changeset, instead of just a file
I In particular, directory trees

I Support for client-server, via NFS

Concurrent Versions System (CVS), 1986

I Changeset not explicitly stored, but inferred from time window
I This time window is

I narrow because the changeset commit is automatic, but
I NOT ATOMIC!
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Atomic Changesets and Sharing, aka The Bronze Age

SVN, 2000

I Changeset commited atomically and given a unique revision
number

I Built in, native network support

I Perforce, Visual SourceSafe, and many others



Star Topology

Readers Commit Bit (Writers)

Repository

(Object  Store)

Working

Copy

Working

Copy...Working

Copy

Working

Copy

Working

Copy...Working

Copy

I Working copy is distinct from the repository, which contains
the object store.

I The “Commit bit”



Distribution, aka The Iron Age

I Co-commit sequences (ordered sets) of changesets aka
branches

I Totally ordered, within a branch
I Partially ordered, across branches

I Everyone has a repository, with the complete history

I BitKeeper 1998, used by Linux in 2000

I Git and Mercurial, 2005

I Bazaar (2005), GNU Arch (2006), Darcs, SVK, others. . .

The BitKeeper license for the Linux kernel was withdrawn amid
claims that Andrew Tridgell had reverse-engineered the BitKeeper
protocols.
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The Age of Aquarius?

The history of version control is one of increasing fidelity of what
they record; from file, to sets of files (changesets) to, sequences of
changesets, aka branches.
What will the next step be?

I One idea I have is language-awareness

I Better exploitation of history



All Repositories Are Created Equal

Git Repository

Working

Copy

Index

Staging

gi t  update- index

Object

S to re

git commit -a

git commit

gi t  checkout

The object store is a database of commits; it is the history.



The Difference Distribution Makes

Repository

Repository

Working

Copy

Index

Staging

gi t  update- index

Object

S to re

git commit -a

git commit

gi t  checkout

Object

S to re

gi t  push

Working

Copy

Index

Staging

gi t  update- index

git commit -a

git commit

git pull

gi t  checkout

Must commit locally, before you can push remotely.



The Rapid Adoption of Distributed VC

I James Carville, 1992: “It’s the economy, stupid”

I “It’s the branching, stupid”, not distribution
I 60 projects
I 1.5 → 3.7 branches / month
I Retained star topology

I A Git object store is a set of branches
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Branching

I Branches allow isolated work: they separate
I debugging and new feature development from
I integration, the handling concurrent work by others
I Allow offline work, as when flying

I “Cohesive and Isolated Development with Branches” at
FASE’12



3-way Merge

A B

C

D

Branch Point Head

Head
Main

my-branch

Merge

I Use common ancestor to identify blocks changed in neither,
one or both

I At the time Git was written, SVN did not track the branch
point and had no way to identify it



3-way Merge
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F

A’ <-> A’’
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C’

""  < ->  D

E

F

I Flag those changed in both
as conflicts

I ”I’m an egotistical bastard,
and I name all my projects
after myself. First ’Linux’,
now ’git’.” —Linus Torvalds
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I Research Idea: Use dataflow
to find potential conflicts
through globals.

I Still a ”stupid git”
approach: notifies the user
about changes in one or
the other



Location Addressable Storage

Think array, notably the memory array.



Content-Addressable Storage

I Associative array or hash
table

I Use insecure hash function
to identify a changeset

I This is how each repository
generate universal keys,
without communication.

I Git better demonstrates
Linus Torvald’s design
prowess than Linux



The Git UI

I What I Hate About Git — Hacker News

I Reddit: A Nightmage of Mixed Metaphors

I Why Git sucks and you’ll use it anyways



Daily Use

Action SVN Git

Create Repo svnadmin create 〈repo〉 git init
Commit svn commit

-m ”Fix Bug” file
git commit -am ”Fix
Bug”

Diff svn diff git diff
Status svn status git status
Restore svn revert git checkout
add, rm, mv svn {add, rm, mv} git {add, rm, mv}
History svn log git log
Remote svn checkout 〈url〉 git clone 〈url〉
· · · · · · · · ·

http://git.or.cz/course/svn.html

http://git.or.cz/course/svn.html


Advanced Commands

I git bisect: provide a property test, then binary search history

I git rebase: edit history



VC and Empirical Software Engineering

I Data is usually expensive
I Countercurrent in the age of big data
I Physics depends on colliders that cost billions
I The core ESE difficulty

I VC has given SE
I A cheap source of plentiful data
I Perhaps also a street light



Continuous Integration

Continuous integration (CI) is the practice, in software engineering,
of merging all developer workspaces with a shared mainline several
times a day.

I Originated in extreme programming (XP)

I Seeks to prevent ”integration hell”

I Adopted outside of XP

I Jenkins, IBM’s Jira



CI build servers run tests

I upon each commit

I at a scheduled time

I after n commits

Research Questions

I What is the optimal granularity?

I Does that granularity vary with project?



Workflow and Promotion

A workflow is a set of conventions used to organize development.

I How is work divided up into tasks and assigned?
I How are the tasks integrated, i.e. promoted to main or

deployed?

I Is it a free-for-all?
I Is testing required?
I Is review required?

Not knowing an organization’s workflow can get you fired!
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I You feel like it



My Workflow

1. Always work in a branch other than main!

2. Commit whenever
I Caffeine run
I Itchy nose
I You feel like it



My Workflow

1. Always work in a branch other than main!

2. Commit whenever; this gives
I Fine-grained backup
I Frees me from thinking about beautiful commits
I However, ugly commits write an UGLY history
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Rebasing Considered Harmful?

I Google “git rebase evil harmful”

I Public vs private branches



Rebasing

I For good, clean, understandable commits
I Clear, pertinent commits messages
I The project builds
I Conceptually cohesive: fusing and breaking commits

I Just as branches separate integration and development,
rebasing separates development from the concern of version
history



My Workflow

1. Always work in a branch other than main!

2. Commit whenever

3. When ready to integration/promote, rebase

4. When on a team, ask someone else to review prior to
promotion

I Fresh eyes



¿The One True Way?

“The unexamined life is not worth living for a human being.”
—Socrates, Apology



Commit Messages

I What to write?

I It’s the documentation problem redux.

I The Missing Links: Bugs and Bug-fix Commits

I ¡Why not what!



Indispensible Tool Redux

I git bisect

I DVC gives fine-grained, semantic back-up nearly for free

I Good commit messages help comprehension and navigation;

I Commits define sets of files and methods whose co-commit can
help navigation.

I Continuous Integration

I Code Review Support — Gerrit



Git Resources

I Wikipedia, of course

I For you poor misguided Windows users, there is TortoiseGit
I Remember to upload your source and changes, not your keys or

passwords
I Slashdot: Github Kills Search After Hundreds of Private Keys

Exposed



¿Questions?
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