
On Version Control
Earl Barr

Department of Computer Science
University College London

March 2013

Programming Is Writing

I Programming is writing in a programming language.
I Like authors, programmers

I read more often then they write; and
I write for themselves and each other

I Unlike authors, they’re also writing instructions for a machine

Programming Is Writing

I Programming is writing in a programming language.
I Like authors, programmers

I read more often then they write; and
I write for themselves and each other

I Unlike authors, they’re also writing instructions for a machine

A Cool Word

pa · limp · sest
/’pa-l@mp-sest/
Noun

1. A manuscript or piece of writing material on which the original
writing has been effaced to make room for later writing.

2. Something reused or altered but still bearing visible traces of its
earlier form.

The Archimedes Palimpsest

Source Code as Palimpset

Like parchment, source code is constantly being worked and
reworked:

I refactored

I fixed

I extended

Change and rework is a measure of the vitality of software

Source Code as Palimpset

Like parchment, source code is constantly being worked and
reworked:

I refactored

I fixed

I extended

Change and rework is a measure of the vitality of software

Version Control

I Tracks the history of edits

I Allows reverting changes
and cherry-picking

I Language independent
I Differs from back up

I Granularity
I Commit messages
I Copying data onto

other hardware is a
side-effect

Infeasible before the computer age

Goals

I History of Version Control (VC)

I Indispensable tool

I Teach you about VC, focusing on Git

I Pose research questions

Prehistory

Entirely manual:

cp f i l e f i l e . t imestamp

I Still heavily used!

I Microsoft Word is a case in point, despite its revision history

I Closer to backup: fine-grained, but no easy way to add commit
messages

Prehistory

Entirely manual:

cp f i l e f i l e . t imestamp

I Still heavily used!

I Microsoft Word is a case in point, despite its revision history

I Closer to backup: fine-grained, but no easy way to add commit
messages

Prehistory

Entirely manual:

cp f i l e f i l e . t imestamp

I Still heavily used!

I Microsoft Word is a case in point, despite its revision history

I Closer to backup: fine-grained, but no easy way to add commit
messages

Files, aka The Stone Age

I Source Code Control System (SCCS), 1972

I Revision Control System (RCS), 1982
I VAX/VMS, circa 1975

I At each write, 〈filename〉;〈version〉; → 〈filename〉;〈version + 1〉;

RCS and SCCS store delta, or changes, or commits in a subdirectory
of the source directory.

Set of Files and Sharing, the late Stone Age

I Co-commit a set of files, or changeset, instead of just a file
I In particular, directory trees

I Support for client-server, via NFS

Concurrent Versions System (CVS), 1986

I Changeset not explicitly stored, but inferred from time window
I This time window is

I narrow because the changeset commit is automatic, but
I NOT ATOMIC!

Set of Files and Sharing, the late Stone Age

I Co-commit a set of files, or changeset, instead of just a file
I In particular, directory trees

I Support for client-server, via NFS

Concurrent Versions System (CVS), 1986

I Changeset not explicitly stored, but inferred from time window
I This time window is

I narrow because the changeset commit is automatic, but
I NOT ATOMIC!

Atomic Changesets and Sharing, aka The Bronze Age

SVN, 2000

I Changeset commited atomically and given a unique revision
number

I Built in, native network support

I Perforce, Visual SourceSafe, and many others

Star Topology

Readers Commit Bit (Writers)

Repository

(Object Store)

Working

Copy

Working

Copy...Working

Copy

Working

Copy

Working

Copy...Working

Copy

I Working copy is distinct from the repository, which contains
the object store.

I The “Commit bit”

Distribution, aka The Iron Age

I Co-commit sequences (ordered sets) of changesets aka
branches

I Totally ordered, within a branch
I Partially ordered, across branches

I Everyone has a repository, with the complete history

I BitKeeper 1998, used by Linux in 2000

I Git and Mercurial, 2005

I Bazaar (2005), GNU Arch (2006), Darcs, SVK, others. . .

The BitKeeper license for the Linux kernel was withdrawn amid
claims that Andrew Tridgell had reverse-engineered the BitKeeper
protocols.

Distribution, aka The Iron Age

I Co-commit sequences (ordered sets) of changesets aka
branches

I Totally ordered, within a branch
I Partially ordered, across branches

I Everyone has a repository, with the complete history

I BitKeeper 1998, used by Linux in 2000

I Git and Mercurial, 2005

I Bazaar (2005), GNU Arch (2006), Darcs, SVK, others. . .

The BitKeeper license for the Linux kernel was withdrawn amid
claims that Andrew Tridgell had reverse-engineered the BitKeeper
protocols.

Distribution, aka The Iron Age

Mauro Carvalho Chehab

Michael Krufky

926

Andrew Morton 41

Antonino A. Daplas

581

Oleg Nesterov

331

Christoph Lameter

312

Heiko Carstens

87

Roman Zippel

241

KAMEZAWA Hiroyuki

100

Paul Mundt

86

Matt Mackall

78

Paul E. McKenney

60

Ian Kent

59

William Lee Irwin III

46

Jeremy Fitzhardinge

36

Badari Pulavarty

33

Mingming Cao

33

James Simmons

25

Chris Wright

29

Petr Vandrovec

28

Rik van Riel

28

Markus Lidel

25

Matthew Wilcox

24

Pat Gefre

22

Martin Waitz

22

Jay Lan

21

Robert Love

20

Steven Rostedt
20

Carsten Otte

18

Marcelo Tosatti

17

Daniel Ritz
11

Rajesh Shah

14
Marcel Holtmann

13

Simon Horman

12

Vitaly Bordug

11

Coywolf Qi Hunt

10

Shaun Pereira

8

Stas Sergeev
8

42

Greg KH

Alan Stern

475

Oliver Neukum

156

Kay Sievers

127

Pete Zaitcev

93

Phil Dibowitz

59

Matthew Dharm

42

Duncan Sands
34

Cornelia Huck

32

Ed L. Cashin

28

Ian Abbott

23

Patrick Mochel 22

Olav Kongas

16

Grant Coady

15

Thomas Winischhofer

12

Rudolf Marek

12
Yani Ioannou

12

Maneesh Soni

11

David S. Miller

Michael Chan

426

John W. Linville

280

Thomas Graf

230

Harald Welte

118

Eric Dumazet

112

jamal
66

Robert Olsson

46

David L Stevens

24

Tom spot Callaway

14

Baruch Even

11

Julian Anastasov

10

Paolo Blaisorblade Giarrusso

Jeff Dike
415

Bodo Stroesser

12

54

Al Viro

24

16

Russell King

Ben Dooks

360

Lennert Buytenhek

150

Nicolas Pitre

146

Catalin Marinas

107

Deepak Saxena
103

Tony Lindgren

81

Sascha Hauer

47

George G. Davis

18

Vincent Sanders

11

James Bottomley

Andrew Vasquez

353

Mike Christie

276

Eric Moore

139

Brian King

119

Mark Haverkamp

74

Andreas Herrmann 51

Tejun Heo
25

Douglas Gilbert

20

Kai Makisara

18

Trond Myklebust

Chuck Lever

341

Manoj Naik

10

Ingo Molnar

38

Linus Torvalds

68

24

Greg Ungerer

291

Martin Schwidefsky

21

194

Benjamin Herrenschmidt

143

David Howells

83

1619

Roland McGrath

43

12

21

Stephen Rothwell

28

20

Karsten Keil

24

Jeff Mahoney

17

Michael Kerrisk

11

Suparna Bhattacharya

11

Dave Kleikamp

11

274

37

Neil Brown

J. Bruce Fields

191

Andy Adamson

28

Andi Kleen 167

Venkatesh Pallipadi

29

Rusty Russell

36

Ashok Raj

23

Suresh Siddha16

H. Peter Anvin

9

Roland Dreier

Michael S. Tsirkin

163

Sean Hefty

114

Hal Rosenstock

30

Pavel Machek

Rafael J. Wysocki

162

65

9

34

Nathan Scott

Christoph Hellwig
98

Eric Sandeen

21

Dean Roehrich

8

10

Ganesh Venkatesan

Mallikarjuna R Chilakala

71

John Ronciak

71

James Morris

Stephen Smalley

70

Eric Paris

44

54

Dmitry Torokhov

Vojtech Pavlik

64

Thomas Gleixner

20

20

64

Artem Bityutskiy

49

Todd Poynor

18

Kyungmin Park

13

Tony Luck

Jack Steiner

54

Russ Anderson

51

Dean Nelson

37

Jes Sorensen

36

Kenji Kaneshige

27

Mark Maule

20

Robin Holt

18

Prarit Bhargava

18

Peter Chubb

14

Bob Picco

12

Alex Williamson

11 Greg Edwards
9

Johannes Stezenbach

Patrick Boettcher

51

Manu Abraham

20

Len Brown
Bjorn Helgaas

48

17

Vivek Goyal

Eric W. Biederman

44

Sridhar Samudrala

Vlad Yasevich44

Kumar Gala

Jon Loeliger

44

Kim Phillips

36

Andy Fleming
13

Randy Vinson

9

Jody McIntyre

Stefan Richter

43

26

Dave Jones

41

Mark Langsdorf

17

Jun ichi Nomura

Kiyoshi Ueda

39

13

Michael Ellerman

31
18

30

Protasevich, Natalie

28

24

10
11

Domen Puncer

maximilian attems
24

Nishanth Aravamudan

14

Christophe Lucas

11

9

Nick Piggin

21

Jeff Garzik

Maciej W. Rozycki

18

Pekka Enberg

8

Herbert Xu

Evgeniy Polyakov

17

Ben Gardner

12

Dominik Brodowski

17

Komuro

9

Takashi Iwai
Karsten Wiese15

Sasha Khapyorsky

13

Ville Syrjala

8

13

Shaohua Li 13

Paul Mackerras

John Rose

11

Ananth N Mavinakayanahalli

8

11

Hirokazu Takata

Hayato Fujiwara

11

Hitoshi Yamamoto

10

The Age of Aquarius?

The history of version control is one of increasing fidelity of what
they record; from file, to sets of files (changesets) to, sequences of
changesets, aka branches.
What will the next step be?

I One idea I have is language-awareness

I Better exploitation of history

All Repositories Are Created Equal

Git Repository

Working

Copy

Index

Staging

gi t update- index

Object

S to re

git commit -a

git commit

gi t checkout

The object store is a database of commits; it is the history.

The Difference Distribution Makes

Repository

Repository

Working

Copy

Index

Staging

gi t update- index

Object

S to re

git commit -a

git commit

gi t checkout

Object

S to re

gi t push

Working

Copy

Index

Staging

gi t update- index

git commit -a

git commit

git pull

gi t checkout

Must commit locally, before you can push remotely.

The Rapid Adoption of Distributed VC

I James Carville, 1992: “It’s the economy, stupid”

I “It’s the branching, stupid”, not distribution
I 60 projects
I 1.5 → 3.7 branches / month
I Retained star topology

I A Git object store is a set of branches

The Rapid Adoption of Distributed VC

I James Carville, 1992: “It’s the economy, stupid”
I “It’s the branching, stupid”, not distribution

I 60 projects
I 1.5 → 3.7 branches / month
I Retained star topology

I A Git object store is a set of branches

Branching

I Branches allow isolated work: they separate
I debugging and new feature development from
I integration, the handling concurrent work by others
I Allow offline work, as when flying

I “Cohesive and Isolated Development with Branches” at
FASE’12

3-way Merge

A B

C

D

Branch Point Head

Head
Main

my-branch

Merge

I Use common ancestor to identify blocks changed in neither,
one or both

I At the time Git was written, SVN did not track the branch
point and had no way to identify it

3-way Merge

A

B

C

D

A’

B

C’

E

A’’

B’’

C

D

F

A’ <-> A’’

B’’

C’

"" < -> D

E

F

I Flag those changed in both
as conflicts

I ”I’m an egotistical bastard,
and I name all my projects
after myself. First ’Linux’,
now ’git’.” —Linus Torvalds

3-way Merge

A

B

C

D

A’

B

C’

E

A’’

B’’

C

D

F

A’ <-> A’’

B’’

C’

"" < -> D

E

F

I Flag those changed in both
as conflicts

I ”I’m an egotistical bastard,
and I name all my projects
after myself. First ’Linux’,
now ’git’.” —Linus Torvalds

3-way Merge

A

B

C

D

A’

B

C’

E

A’’

B’’

C

D

F

A’ <-> A’’

B’’

C’

"" < -> D

E

F

I Research Idea: Use dataflow
to find potential conflicts
through globals.

I Still a ”stupid git”
approach: notifies the user
about changes in one or
the other

Location Addressable Storage

Think array, notably the memory array.

Content-Addressable Storage

I Associative array or hash
table

I Use insecure hash function
to identify a changeset

I This is how each repository
generate universal keys,
without communication.

I Git better demonstrates
Linus Torvald’s design
prowess than Linux

The Git UI

I What I Hate About Git — Hacker News

I Reddit: A Nightmage of Mixed Metaphors

I Why Git sucks and you’ll use it anyways

Daily Use

Action SVN Git

Create Repo svnadmin create 〈repo〉 git init
Commit svn commit

-m ”Fix Bug” file
git commit -am ”Fix
Bug”

Diff svn diff git diff
Status svn status git status
Restore svn revert git checkout
add, rm, mv svn {add, rm, mv} git {add, rm, mv}
History svn log git log
Remote svn checkout 〈url〉 git clone 〈url〉
· · · · · · · · ·

http://git.or.cz/course/svn.html

http://git.or.cz/course/svn.html

Advanced Commands

I git bisect: provide a property test, then binary search history

I git rebase: edit history

VC and Empirical Software Engineering

I Data is usually expensive
I Countercurrent in the age of big data
I Physics depends on colliders that cost billions
I The core ESE difficulty

I VC has given SE
I A cheap source of plentiful data
I Perhaps also a street light

Continuous Integration

Continuous integration (CI) is the practice, in software engineering,
of merging all developer workspaces with a shared mainline several
times a day.

I Originated in extreme programming (XP)

I Seeks to prevent ”integration hell”

I Adopted outside of XP

I Jenkins, IBM’s Jira

CI build servers run tests

I upon each commit

I at a scheduled time

I after n commits

Research Questions

I What is the optimal granularity?

I Does that granularity vary with project?

Workflow and Promotion

A workflow is a set of conventions used to organize development.

I How is work divided up into tasks and assigned?
I How are the tasks integrated, i.e. promoted to main or

deployed?

I Is it a free-for-all?
I Is testing required?
I Is review required?

Not knowing an organization’s workflow can get you fired!

Workflow and Promotion

A workflow is a set of conventions used to organize development.

I How is work divided up into tasks and assigned?
I How are the tasks integrated, i.e. promoted to main or

deployed?
I Is it a free-for-all?

I Is testing required?
I Is review required?

Not knowing an organization’s workflow can get you fired!

Workflow and Promotion

A workflow is a set of conventions used to organize development.

I How is work divided up into tasks and assigned?
I How are the tasks integrated, i.e. promoted to main or

deployed?
I Is it a free-for-all?
I Is testing required?
I Is review required?

Not knowing an organization’s workflow can get you fired!

My Workflow

1. Always work in a branch other than main!

2. Commit whenever

I Caffeine run
I Itchy nose
I You feel like it

My Workflow

1. Always work in a branch other than main!

2. Commit whenever
I Caffeine run
I Itchy nose
I You feel like it

My Workflow

1. Always work in a branch other than main!

2. Commit whenever; this gives
I Fine-grained backup
I Frees me from thinking about beautiful commits
I However, ugly commits write an UGLY history

3. When ready to integration/promote, rebase

My Workflow

1. Always work in a branch other than main!

2. Commit whenever; this gives
I Fine-grained backup
I Frees me from thinking about beautiful commits
I However, ugly commits write an UGLY history

3. When ready to integration/promote, rebase

Rebasing Considered Harmful?

I Google “git rebase evil harmful”

I Public vs private branches

Rebasing

I For good, clean, understandable commits
I Clear, pertinent commits messages
I The project builds
I Conceptually cohesive: fusing and breaking commits

I Just as branches separate integration and development,
rebasing separates development from the concern of version
history

My Workflow

1. Always work in a branch other than main!

2. Commit whenever

3. When ready to integration/promote, rebase

4. When on a team, ask someone else to review prior to
promotion

I Fresh eyes

¿The One True Way?

“The unexamined life is not worth living for a human being.”
—Socrates, Apology

Commit Messages

I What to write?

I It’s the documentation problem redux.

I The Missing Links: Bugs and Bug-fix Commits

I ¡Why not what!

Indispensible Tool Redux

I git bisect

I DVC gives fine-grained, semantic back-up nearly for free

I Good commit messages help comprehension and navigation;

I Commits define sets of files and methods whose co-commit can
help navigation.

I Continuous Integration

I Code Review Support — Gerrit

Git Resources

I Wikipedia, of course

I For you poor misguided Windows users, there is TortoiseGit
I Remember to upload your source and changes, not your keys or

passwords
I Slashdot: Github Kills Search After Hundreds of Private Keys

Exposed

¿Questions?

	Introduction

