
BQL: Capturing and Reusing Debugging Knowledge ∗

Zhongxian Gu Earl T. Barr Zhendong Su
Department of Computer Science, University of California at Davis

{zgu,etbarr,su}@ucdavis.edu

ABSTRACT
When fixing a bug, a programmer tends to search for similar bugs
that have been resolved in the past. A fix for a similar bug may help
him fix his bug or at least understand his bug. We designed and
implemented the Bug Query Language (BQL) and its accompanying
tools to help users search for similar bugs to aid debugging. This
paper demonstrates the main features of the BQL infrastructure. We
populated BQL with bugs collected from open-source projects and
show that BQL could have helped users to fix real-world bugs.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques; D.2.5
[Software Engineering]: Testing and Debugging; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms
Design, Languages, Reliability

Keywords
BQL, Reusing debugging knowledge

1. INTRODUCTION
Some bugs, among the millions that exist, are similar to each

other. When a programmer encounters a bug, it is likely that a
similar bug has been fixed in the past. A fix for a similar bug can
help the programmer understand his bug, or even directly fix his bug.
Studying bugs with similar symptoms, programmers may determine
how to detect and resolve them. This is why programmers often
search for similar, previously resolved, bugs.

Leveraging past solutions to current problems improves program-
mers’ productivity. The solutions, in the form of a variety of formats,
are stored on diverse systems, such as bug tracking systems, SCM
commit messages, and mailing lists. The central challenge here is
how to efficiently and accurately search and effectively reuse this
large and unwieldy set of data sources.

Existing work has focused on analyzing bug reports and other
unstructured bug information. DebugAdvisor combines both struc-

*This research was supported in part by NSF CAREER Grant No.
0546844, NSF CyberTrust Grant No. 0627749, NSF CCF Grant No.
0702622, NSF TC Grant No. 0917392, and the U.S. Air Force under
grant FA9550-07-1-0532. The information presented here does not
necessarily reflect the position or the policy of the Government and
no official endorsement should be inferred.

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

tured and unstructured data such as natural language description,
debug output, and stack trace to construct a new sort of query, called
fat query [1]. DebugAdvisor returns large result sets that require
human processing. Jula et al. proposed Dimmunix, a system that
prevents previously encountered deadlocks from happening again
in a program [3]. Dimmunix stores previous deadlock patterns, a
method invocation sequence along with thread scheduling decision,
and monitors the current system to prevent it from being trapped
into those deadlocks again. Dimmunix targets only deadlock bugs.

A common practice when bug-fixing is to paste keywords into a
search engine, like Google. A search engine searches the large data
sources with keywords, resulting in many false positives. Searches
predicated on incorrect keywords might further pollute the results.
This paper describes the bug query language (BQL) infrastructure,
designed from the ground up to facilitate the search for similar bugs,
and demonstrates how to use it to aid debugging. At the heart of this
infrastructure is BQL, a flexible query language that allows users to
express a wide variety of queries over trace comparison. Compared
with a search engine, BQL focuses on the systematic use of bug
semantics — BQL searches for bugs similar to a queried bug by
comparing execution traces of the queried bug with execution traces
of other bugs.

To use BQL, users must populate its database with their bugs. The
BQL infrastructure provides tools for collecting execution traces
from bugs and uploading them into its database. Users then issue
queries to search for similar bugs. Users can explore their queries’
result sets to determine whether their behavior and fixes help fix an
open bug. We have a technical report [2] that focuses on validating
our hypothesis that unique bugs are rare, and the detailed design and
implementation of BQL and its supporting infrastructure.

To show how to use the BQL infrastructure, we have populated
its database with bugs from Rhino and the Apache Commons projects.
Section 2 catalogs the features of BQL. Section 3 presents two
detailed scenarios, drawn from real bugs in the Apache Commons

projects, that demonstrate how BQL can speed debugging. BQL is
open to the public at http://gu.cs.ucdavis.edu:8080/BQL.

2. MAIN FEATURES OF BQL
The BQL infrastructure consists of an offline trace collection

framework and a web-based user interface that allows user to upload
their execution traces, search for and explore similar bugs.

Collecting and Uploading Traces. To use BQL, a user needs to
populate BQL’s database with his bugs. BQL uses execution traces
to index bugs, so a user must collect and upload them. BQL’s trace
collection framework provides a tool that instruments class and jar
files in a directory. After instrumenting a program, the user runs it
against a bug-triggering input to generate a trace file, which he then
uploads into BQL, as shown in Figure 1. In addition to uploading

1

http://gu.cs.ucdavis.edu:8080/BQL

Figure 1: To upload a bug, the user selects (or adds) a project,
accepts (or overrides) the default id, then chooses the trace file.

Figure 2: To issue a query, the user types the query in the text
box and clicks submit.

the trace file, this page asks the user to select or add a project name
and allows the user to add a brief description. Using the project
name, BQL suggests an id, as shown. After a successful upload,
BQL opens a page that displays the uploaded trace. BQL currently
contains 546 bugs collected from Rhino and the Apache Commons
projects. We invite users to upload their bug traces, use BQL, and
contribute to it.

Issuing Queries. The syntax of BQL is based on the standard
query language SQL. The details of its syntax and semantics are
described in the technical report [2]. Here, we illustrate BQL with
simple examples. Please refer to our online documentation for more
extensive tutorials. We begin with the simplest database query:
returning all rows in the database. In BQL, this is "SELECT bug FROM

ALL WHERE TRUE". To return all the bugs in one project, say Rhino,
we replace ALL with rhino to return all rhino bugs in the database
and issue "SELECT bug FROM rhino WHERE TRUE".

Traces may differ in numerous ways irrelevant to a bug’s seman-
tics. For example, two traces may have taken different branches of
a conditional when neither branch has any relation to the bug. As
another example, trace events with the same semantics in a partic-
ular context may have different names. Concrete execution traces
can therefore obscure semantic similarity, both cross-project and
even within project. To combat the false negatives this can cause,
BQL allows two traces to differ in either Hamming or Levenshtein
edit distance, with Levenshtein the default. BQL also supports user-
defined distance functions, adapted to a particular problem domain.

Figure 3: BQL links this page in the Jira bug tracking system.

Appending a DISTANCE clause to a query overrides the default,
e.g. "SELECT bug FROM ALL WHERE TRUE DISTANCE HAMMING".

Bugs may be similar in different ways. Thus, the query language
allows users to define their own notions of trace similarity. BQL
provides powerful operators that give users flexible control over
trace comparison. When we are debugging, we are often interested
in the behavior of a program shortly before an error manifested itself.
BQL allows searching traces for bugs with similar suffix traces

SELECT bug FROM Collections

WHERE SUBSET?(bug[50], Collections-104[50], 30).

Here, Collections-104 is the queried bug against which BQL
searches for similar bugs. [50] is the suffix operator that prunes
traces to suffixes of length 50. Collections-104[50] is the set of
length 50 suffixes of the traces in Collections-104 and bug[50] is
the set of length 50 suffixes for an arbitrary bug. The FROM clause
restricts the search to bugs in the Collections project.

This query returns those bugs in the Collections project whose
length 50 suffixes are a subset of those of Collections-104 when up
to 30 Levenshtein edits are applied. Figure 2 shows the results of the
query. For usability, BQL returns similar bugs in order of increasing
edit distance so that users can put more effort into analyzing bugs
whose traces are closer, in edit distance, to the queried. BQL allows
issuing a query that matches against the previous result set. This
allows users to write a sequence of queries that gradually refine
their results. To do this, users issue a new query on the query page
without resetting. To begin a fresh query, they simply reset before
issuing the query.

When asking whether two bugs are similar, a user may wish to
project irrelevant events out of the trace before the comparison. For
example, when searching for bugs similar to the bug 527, a user may
want to drop methods in the log package to reduce noise. The query

SELECT bug FROM ALL

WHERE SUBSET?(PROJ(bug, ˆlog), 527, 10)

accomplishes the task. In this query, PROJ(bug, ˆlog) removes all
the methods in the log package from traces bug, then asks whether a
candidate bug’s set of traces is a subset of those of 527 with up to 10
edits allowed. In addition to its SUBSET? predicate, BQL defines an
INTERSECT? predicate that returns true when a candidate bug’s set
of traces has a nonempty intersection with the queried bug’s traces.

Exploration. To be useful, the BQL system must make it conve-
nient to explore each bug in a result set. BQL provides two ways

2

Figure 4: Bug data cached by BQL.
1 DynaBean myBean = new LazyDynaBean ();
2 myBean.set("myDynamicKey", null);
3 Object o = myBean.get("myDynamicKey");
4 if (o == null)
5 System.out.println("o is null.");

Figure 5: LazyDynaBean does not return null.

to explore a bug — linking the original bug data in a bug tracking
system, such as Bugzilla or Jira, and caching some of that data
locally. In Figure 3, BQL links the bug page in the original bug
tracking system. This page contains discussions among developers
and reporters and ancillary material. These pages can be quite large;
it might take some time for a user to scan them in their entirety to
discover a solution. To save time, the BQL infrastructure itself stores
the buggy source code, the fix and failing test case (if available), and
useful comments gathered during bug collection. Users can explore
a bug’s directory, shown in Figure 4, to find a solution more quickly.
In the future, we will extend BQL to allow users to update this data.

3. USAGE SCENARIO
In this section, we use two real bugs from the Apache Commons

projects to construct two scenarios that demonstrate how BQL can
help a programmer to fix his bug by identifying similar bugs.

The Apache Commons BeanUtils project provides easy-to-use
wrappers for dynamic Java beans. In particular, the BeanUtils

project allows a programmer to instantiate a LazyDynaBean to lazily
set and get values without statically knowing the property name of
a Java bean, as on line 2 of Figure 5. The bug BeanUtils-342 was
filed concerning the behavior that LazyDynaBean does not return
null when a property is explicitly set to null.

How could BQL have helped the reporter of BeanUtils-342 solve
this problem? Assuming BQL’s database had been populated with
traces from BeanUtils, the bug reporter could issue queries to search
for similar bugs to BeanUtils-342. When the reporter does not
deeply understand the problem, matching trace suffixes is a natural
way to search for bugs, since many bugs cause termination. The
reporter tries the following query:

SELECT bug FROM BeanUtils

WHERE SUBSET?(bug[50], BeanUtils-342[50], 50).

This query returns bugs in BeanUtils whose length 50 suffixes are a
subset of those of BeanUtils-342 when up to 50 Levenshtein edits
are applied.

The query returns BeanUtils-24 first with distance 34, whose
problem appears identical to that of BeanUtils-342: the get method
of LazyDynaBean did not return null when the property was ex-

plicitly set to null. Studying the solution to BeanUtils-24 reveals
that the observed behavior is the intended behavior and provides
a workaround: subclass LazyDynaBean class and override the Cre-

ateProperty method to return null. The reporter realizes that he
can also apply the similar workaround to fix his bug: subclass
LazyDynaBean class and override CreateOtherProperty method to
return null. In fact, a project developer replied with the same fix
five months later after the reporter filed BeanUtils-342. With the
help of BQL, the reporter could have resolved the bug in minutes,
instead of possibly waiting five months for the answer.

Our second example involves the Apache Commons Configu-

ration project, which defines an interface for reading configu-
ration data from a variety of sources such as XML or property
files. Bug Configuration-323 occurred when the DefaultConfig-

urationBuilder class misinterpreted property values as lists when
parsing configuration files. To gain insight into this bug, the bug
reporter could have tried to search for similar bugs using suffix
comparison again. The query

SELECT bug FROM Configuration

WHERE SUBSET?(bug[50], Configuration-323[50], 50)

returns Configuration-354 first, at distance 26 from 323. In this
bug, XMLConfiguration mishandled a non-default list delimiter. The
fix of 354 is not helpful; the suffixes of 323 and 354 are similar
because their test cases both process XML configuration files.

In the bug report of Configuration-323, the reporter speculated
that the invocation of ConfigurationUtils.copy during internal
processing might be the cause. To confirm this hunch, the reporter
might use BQL’s regular expression matching to investigate all bugs
that call ConfigurationUtils.copy. The query

SELECT bug FROM Configuration

WHERE SUBSET?(bug, ConfigurationUtils.copy)

searches for bugs in the Configuration project that invoke Config-

urationUtils.copy. The result set contains Configuration-272

and 283. Studying these bugs reveals that calling ConfigurationU-

tils.copy caused both of them and that project developer pro-
vided a workaround. These bugs predate Configuration-323. Thus,
the reporter could have used BQL’s pattern matching to resolve
Configuration-323 by identifying and studying 272 and 283, then
applying their workaround.

4. CONCLUSION
We have described the BQL infrastructure that compares ex-

ecution traces to find similar bugs to aid debugging. We have
demonstrated how to collect and upload traces, issue queries, and
explore result sets in BQL. We have also shown how BQL can
be used to aid debugging. BQL is open to the public at http:
//gu.cs.ucdavis.edu:8080/BQL. Our demonstration video is
available at http://www.youtube.com/watch?v=yzm9iD5Ow9w.
We invite readers to use BQL and help us improve it.

5. REFERENCES
[1] B. Ashok, J. Joy, H. Liang, S. Rajamani, G. Srinivasa, and V. Vangala.

DebugAdvisor: A recommender system for debugging. In ESEC/FSE,
2009.

[2] Z. Gu, E. T. Barr, and Z. Su. Language and tool support for semantic
bug analysis. Technical Report CSE-2011-3, Department of Computer
Science, University of California, Davis, 2011.

[3] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock immunity:
Enabling systems to defend against deadlocks. In OSDI, 2008.

3

http://gu.cs.ucdavis.edu:8080/BQL
http://gu.cs.ucdavis.edu:8080/BQL
http://www.youtube.com/watch?v=yzm9iD5Ow9w

	Introduction
	Main Features of BQL
	Usage Scenario
	Conclusion
	References

