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Abstract

This thesis explores computation mobility. We view mobility, the selection of an execution

environment, as an attribute of a computation. To capture this attribute, we introduce

a novel programming abstraction, which we call a mobility attribute, that specifies where

computations should occur within a distributed system. Programmers dynamically bind

mobility attributes to program components, nonempty sets of functions and their state. Once

bound to a component, mobility attributes apply prior to each execution of that component.

For example, a mobility attribute can specify that a computation should be collocated with

an invoker. When a component bound to that mobility attribute receives an invocation it

moves to the invoker’s location before executing.

Mobility attributes are the primitives that form MAGE, a new programming model

that allows a programmer runtime control over the location of a program’s components.

This control can improve the program’s robustness or its runtime efficiency by co-locating

components and resources. To illustrate the utility of MAGE, this thesis presents the design

and implementation of the MAGE programming model in a Java library that extends Java’s

RMI to support mobility attributes.
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Chapter 1

Introduction

Mobility is the true test of a supply system.
Captain Sir Basil Liddell Hart

Thoughts on War, 1944

The days of single address space computing are behind us. Driven by the power wall [77],

multicores are upon us — dual core machines are already ubiquitous, 16 core machines

are commercially available [35], and Intel Corporation is prototyping 80 core machines [65].

To increase server utilization, hosting services are employing virtualization to partition

the resources of a single machine, turning it into a virtual cluster [62]. The World Wide

Web (WWW) [11] and peer to peer applications, like BitTorrent [84] and Gnutella [34],

are inherently distributed. Scientific computation is moving from its traditional super-

computer environment to distributed systems, lured by the expandability and cost savings.

To capitalize on this trend, companies now rent out processor farms [104, 114]; in academia,

the Grid [20] has similar goals.

In short, a wide variety of services and data is dispersed on architectures that are

heterogeneous and evolving. To cope with such change, distributed systems must support

resource discovery, incorporate new hardware, and handle variation in resource availability

such as network latency and bandwidth. For example, over time a host that was CPU-bound

may become idle, and one data source may be exhausted while another comes online.

To fully exploit the runtime environment, distributed programming models should provide
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mechanisms that allow programs to control where their computations occur and thereby

support load balancing, respond to network congestion, and adapt to the appearance,

disappearance, and shifting of resources. This thesis presents one such programming model.

1.1 The Layout Problem

By definition, a distributed application spans machines and comprises multiple, inter-

communicating components. A component has state and code, and communicates with other

components via messages. For example, the application could be a Web 2.0 service [115]

that runs across a browser on a home PC, middleware servers, and a backend database. At a

coarse granularity, the browser, the middleware, and the backend database are components;

at a finer-grain, components may be functions or closures or objects, depending on the

implementation language. This thesis focuses on this latter, finer-grained view of components.

Figure 1.1a captures a distributed application’s component interdependency graph, the

components that may intercommunicate in the lifetime of the application. The vertices are

components. The edges model communication channels. The principle of locality [24] means

that, at any point in time, the active components in an application’s working set comprise a

subgraph of Figure 1.1a.

Figure 1.1b represents that application’s execution environment, which could be a

symmetric multiprocessor, a cluster, or a home PC interacting with servers. The nodes in

Figure 1.1b are execution engines and are not created equal. Some possess unique resources,

like a user or a database. The edges subsume the interconnection tissue of the network, such

as routers and switches.

Controlling where a distributed application’s computations occur boils down to layout —

the problem of mapping that application’s component graph onto a network of execution

engines. All distributed applications must confront the layout problem, which Figure 1.1

depicts. Both graphs are dynamic — the application can create and destroy components,

while execution engines can come online or go offline and their resource profiles can change.

Thus, an application must be able to dynamically adapt and refine its layout as it learns
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(a) Component Intercommunication

=⇒

(b) Execution Environment

Figure 1.1: The Layout Problem

more about its environment.

A migration policy is a particular layout function. It specifies when and where a

component should execute, and thus move. Two axes span the space of migration policies —

the “static versus run-time” and “automatic versus manual” continua.

Optimal automatic layout is intractable [33, Graph Partitioning], so migration policies

are often either manual or heuristic. Deployment specifications are migration policies

that statically map components to execution engines, where they remain for the life of

the application. Such specifications are usually manual, but tools exist that tackle static

automatic layout, notably Coign [46] and J-Orchestra [100]. These tools employ heuristics,

simplify the problem, and resort to human aid. Gang scheduling forms policies that

automatically change the layout of running applications at regular intervals [75]. FarGo

allows administrators to manually reconfigure an application’s layout at runtime [42].

Programmers can use programming models that control component location to write

migration policies that change an application’s layout at runtime [63, Chapter 3]. These

policies allow the application to adapt to its environment. They straddle the automatic versus

manual continuum: it is special-purpose code that a programmer tailors for a particular

application and environment.
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This thesis falls into this last category. It presents a novel programming model for writing

migration policies that apply at runtime.

1.2 Mobility

A travel agent application is often used to motivate mobile code, e.g., [109]. Figure 1.2

depicts two different implementations. Figure 1.2a uses mobile code, while Figure 1.2b uses

messages.

In Figure 1.2a, the application creates mobile code that travels the network searching for

the lowest fare to Ulan Bator, Mongolia. First, it searches all sites. Then it returns to the

site with the lowest fare, Southwest Airlines, where it purchases a ticket. Finally, it returns

to its origin and presents the user with a ticket.

This movement of code from one site to another, denoted by dashed lines in Figure 1.2a,

is just a message that contains the mobile code. In addition to the logic it uses to determine

which ticket to buy, this code must specify its itinerary, as well as contain the messages and

protocol logic for interacting with the airlines. The benefit of mobile code is that it converts

the messages that interact directly with the airlines from remote to local messages. The

performance gain of this conversion depends on the cost of migration.

Whatever the initial cost of migration, that cost increases as the code gathers state. In

Figure 1.2a, the mobile code collects and carries with it the lowest price it has yet seen.

When the actor and the airlines are in different administrative domains, two security concerns

arise: first, servers must accept and execute untrusted code; and second, clients must trust

that no server alters their code or its data. All attempts to address these security concerns

either add messages or additional state, such as proofs, to authenticate and validate mobile

code and its payload. These efforts worsen performance.

In contrast, Figure 1.2b’s message-based implementation sends only data in its messages.

Thus, all of its messages and their replies are remote messages that must traverse the

network. The size of these messages are independent of the number of ticket vendor sites

searched. Because intermediate results return to the actor’s machine, the actor can monitor
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(a) Mobile Code (b) Message Passing

Figure 1.2: The Travel Agent Application

the progress of the search and potentially modify it. The message passing model only forces

airlines to expose a narrow API that supports the relevant ticket search protocol, not an

execution engine, which exposes a much larger surface for an attacker to probe.

Although a changing environment demands runtime approaches, static manual deploy-

ment has dominated server applications, ironically even this travel agent application, the

canonical example of a mobile agent application. For years, mobile programming languages

have not taken off outside of research prototypes. Like functional languages, mobile code

has had ardent supporters, but little traction in industry. The reason is simple. For many

applications, like the travel agent example, a message-passing implementation requires less

bandwidth and raises no security concerns related to executing untrusted code. Additionally,

the rate of change in computing environments has been slow enough for static approaches to

be adequate. Put another way, mobile code has lacked a “killer” application.

In spite of its problems, mobile code has always found its niches, especially within

a single administrative domain. Some applications use protocols, subprotocols of which

can be delegated to a component. Such delegation is profitable when the savings from

collocating the participants in that subprotocol exceeds the cost of migration. Applications
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for which subprotocol delegation pays for itself form one such niche. The travel agent

application as presented does not fall into this niche because the site-specific subprotocol,

shown in Figure 1.2a, consists of a single message exchange. If instead, the mobile component

exchanged many messages with each airline it visited, the savings of collocation might have

exceeded the cost of migration.

Another niche is formed by applications that interact with large datasets and do not

know in advance how to group the elements in those datasets into result sets. Such an

application could build its result set, element by element, by sending a message to request

each element, at great cost. Of course, a single, specialized message that defines a specific

result set would be more efficient, but we do not know that results set in advance. In these

situations, a program is the most flexible and compact way to define a result set. When sent

as messages, these programs are mobile code. Complex SQL queries dispatched to remote

DBMS are one example of such programs. If the SQL queries a client could send were

replaced with distinct messages, their number would be bounded only by the combinatorics

of a database’s attributes and values.

Today, extensible browsers have changed the economics of startups [40]. Entirely new

services, like Gmail, run user interfaces and perform calculations, in their clients’ browsers.

The browser has evolved from a markup renderer to an extensible execution engine that

runs code sent by servers. The Web 2.0, built on the WWW using javascript and flash, is

mobile code’s killer application.

Web 2.0 applications are easy to deploy and cheap to maintain. Unlike standalone

binaries, both initial installation and updates can happen whenever a user accesses the

application. These applications demonstrate that mobility can improve performance when

migration is cheap. Web 2.0 applications use mobile code principally in their user interfaces

to eliminate messages and network latency. Google Docs could not work without it.

Web 2.0 applications fundamentally rely on trust, although they do utilize techniques

such as sandboxing, certificates, and encryption. If you visit a Web 2.0 service, you trust

content including code from that service. Like Web 2.0, this thesis presents a programming

model that trusts both the components and the execution engines those components run on.
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1.3 MAGE

When invoked, a mobile component can move before executing. In Listing 1.1, c is a mobile

component and f is an operation on c. The operation f may need resources external to c.

The invoker i runs the invocation in Listing 1.1. Relative to the invoker i, c is either local or

remote. In a dynamic, evolving distributed system, a program may wish to collocate c and

the external resources it needs or collocate c and i prior to c’s execution. This placement

problem becomes even more complicated when c needs more than one resource from different

hosts.

Listing 1.1: An Invocation

x = c.f(p1, p2);

Code requires a processor and storage to execute. We contend that mobile code requires

a third attribute, a migration policy, to address the layout problem. We present a novel

programming abstraction, called a mobility attribute, that encapsulates a migration policy

and binds to a program’s components. Before invoking c, the invoker i binds a mobility

attribute m to c. When i invokes c in Listing 1.1, m selects an execution engine to which c

moves and executes.

A mobility attribute is the migration policy for the component to which it is bound. A

program is an aggregation of components. The mobility attributes that a program binds to

its components defines the migration policy of that program as a whole.

Mobility attributes capture all programming models proposed to date that incorporate

dynamic layout. They isolate migration logic from an application’s core logic. Because a

mobility attribute only moves a component when that component receives an invocation,

no time is wasted moving components not in use. Using mobility attributes, distributed

applications can employ migration policies that move components at runtime. They can

also bind different attributes to a component, as the runtime environment evolves. Finally,

programmers can combine simple mobility attributes to form attributes that apply complex

policies. For example, a programmer could combine an “execute on the least loaded host”
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attribute with one whose policy is “execute on the host with the most available bandwidth”

to form a new attribute whose policy is “execute on the least loaded host while compute

bound, then move to the host with the most available bandwidth to transmit results.”

This thesis presents and investigates the properties of MAGE (Mobility Attributes Guide

Execution), a distributed programming model based on mobility attributes. MAGE

• adapts the layout of a program’s components, at runtime, to the underlying computation

and communication infrastructure;

• encapsulates all current programming models that incorporate dynamic layout;

• separates an application’s core logic from the exigencies of dynamic layout;

• moves only those components in an application’s working set; and

• realizes migration policies as first class objects that can be composed.

The principal contribution of this thesis is the MAGE programming model and its

realization. The novelty of MAGE rests on the above features it combines. MAGE defines

distributed invocations as configurations of invoker and invoked. The analysis of all combi-

nations of these configurations leads to the discovery of heretofore neglected configurations

and allows MAGE to encompass all proposed mobile programming models. Isolating an

object migration policy into mobility attributes relieves the programmer of the burden of

simultaneously thinking about layout and application logic. MAGE integrates invocation

and mobility, so it applies a migration policy only to objects currently exchanging messages,

i.e. currently in the working set. This relieves the programmer of the difficult task of,

and the performance cost of incorrectly, statically inferring such working sets. MAGE’s

attribute composition can construct complex policies from simple policies. MAGE provides

these qualitative benefits at low cost (Section 7.1). A programmer would choose MAGE for

projects that require dynamic layout adaptation because MAGE (1) separates the migration

concern into attributes; (2) facilitates policy reuse via attribute composition; and (3) offers

powerful, flexible, and elegant control over object and invocation placement.
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MAGE is best suited for applications whose optimal component placement is highly

uncertain statically, because of variation in their execution environment. Load-balancing

is a case in point. A MAGE application can use mobility attributes to push the load-

balancing decision into clients, thereby eliminating a dedicated load-balancing tier and

improving scalability. For example, mobility attributes could round-robin SQL queries across

a collection of database servers.

The rest of this thesis is organized as follows. Chapter 2 begins with a gentle introduction

to MAGE in which we re-implement Sun’s RMI tutorial under MAGE and contrast the

two solutions. Chapter 3 presents the semantics of MAGE’s mobility attributes. Chapter 4

presents the MAGE programming model, its primitives and operators. We show how mobility

attributes arose from an analysis of existing distributed programming models that incorporate

mobility, discuss the MAGE work published at ICDCS 2001 [8], and then generalize to

increase the power and flexibility of mobility attributes. Chapter 5 compares forwarding

pointers against a centralized directory, and shows that the invocation protocol MAGE

initially used, the self-routing invocations protocol, which combines lookup and invocation

messages into a single message, uses more bandwidth on average than the “find, then invoke”

protocol, which uses two distinct messages. Chapter 6 describes the implementation of

RMI, then presents the implementation of MAGE as a set of extensions to RMI. Chapter 7

measures the overhead of our implementation of mobility attributes and presents peripatetic

dining philosophers, a variant of dining philosophers with mobile philosophers. Chapter 8

places MAGE into the context of its related work. Chapter 9 summarizes the thesis and

outlines future work.
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Chapter 2

Two Π Tutorials

Example is always more efficacious than precept.

Samuel Johnson

Rasselas, 1759

In July 2007, Sun’s remote method invocation (RMI) tutorial presents a generic framework

for moving code from a client to server for execution [69]. The code the client sends to the

server calculates π. Here, we introduce RMI and describe Sun’s tutorial. We then describe

its re-implementation under MAGE and compare the two implementations.

2.1 RMI

Java’s Remote Method Invocation (RMI) mechanism allows an object, the client, running in

one Java virtual machine to invoke methods on an object, the server, running in another

Java virtual machine. These invocations are the arcs labeled RMI in Figure 2.1.

In Figure 2.1, the server object first registers with the rmiregistry, as shown by the

RMI arc from the RMI server to the rmiregistry. Then the client downloads a stub,

or proxy, for that server from the rmiregistry. For this to work, both client and server

must statically share the name the server used when it registered in the rmiregistry.

To send an invocation, the client locally invokes a method on the stub. The stub
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Figure 2.1: RMI Overview

marshals that invocation and sends it to the server. The arc directly from RMI Client

to RMI Server represents such an invocation. Upon receiving the invocation, the server

unmarshals the invocation, decodes the method, executes that method in its address space,

and replies with the result.

Listing 2.1: The Compute Interface

1 package compute;

2

3 import java.rmi.Remote;

4 import java.rmi.RemoteException;

5

6 public interface Compute extends Remote {

7 <T> T executeTask(Task<T> t) throws RemoteException;

8 }

For this to work, both the client and the server must share this method’s signature. Here,

that shared interface is Compute, shown in Listing 2.1. Compute defines the executeTask

method. Figure 2.2 illustrates the executeTask protocol.

The executeTask method contains a formal of type Task. Listing 2.2 defines Task.

As noted, Sun’s RMI tutorial presents a framework that allows clients to send code to servers.

This technique is called remote evaluation (REV) [93] and is discussed in greater depth in
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Figure 2.2: Compute Task Protocol

Chapter 3. It is this Task interface that implements REV in this example.

Listing 2.2: The Task Interface

1 package compute;

2

3 public interface Task<T> {

4 T execute();

5 }

RMI supports the code mobility of parameters, other than a method’s receiver, or this,

parameter. When a client wants to pass subclasses or classes that implement an interface

(the case here) as actuals to a RMI invocation, the classes of the actuals may be unknown

to the server. RMI annotates each invocation with a codebase attribute, which contains a

URL that points to the client’s codebase that contains such classes. When the server cannot

resolve a class, it attempts to find the class at that URL using its URLClassLoader.

Thus, Task allows clients to define classes that are statically unknown to the server, but

that the client can send for execution on the server.

In Figure 2.1, the web servers serve these codebases. When the server object registers

itself, the rmiregistry downloads the server object’s class from the web server running on

the same host as the server object. When the client sends unknown classes that implement

Task to the server, the server downloads those classes from the client-side web server.

2.1.1 Server

Listing 2.3 depicts the initialization of the ComputeEngine server. To dynamically exchange

a stub, an RMI client and server must statically share a name under which to upload and
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download that stub in the rmiregistry. Line 25 contains the declaration and initialization of

such a name.

In lines 27-8, the server implicitly starts the RMI infrastructure, publishes engine,

and receives a stub for engine. At this point, if the client had a statically deployed stub

or the server could send stub to the client, the client could invoke executeTask on

engine. In our example, the client dynamically acquires its stub, so the server gets a

stub for the rmiregistry on line 29, and then binds the name Compute to stub in the

rmiregistry on line 30.

2.1.2 Client

In Listing 2.4 on line 14, the client initializes the name that it statically shares with the server

in order to dynamically exchange stubs via the rmiregistry. On line 15, the client gets a

stub to the rmiregistry running on arg[0], the server’s host. The client immediately,

line 16, uses that stub to get a stub to the server’s ComputeEngine instance, engine.

On line 18, the client instantiates the Pi class. Its class definition follows.

public class Pi implements Task<BigDecimal>, Serializable

Pi must implement the Task interface so that the server can execute it; it must

implement the Serializable interface so that it can be marshaled. Pi implements

Machin’s formula [105], Equation 2.1, to compute π. We do not show the rest of Pi’s

definition because its details are incidental.

π

4
= 4 arctan

1
5
− arctan

1
239

(2.1)

To start the server, we first start the rmiregistry, then the ComputeEngine, as

shown in Listing 2.5.

Listing 2.6 depicts running ComputePi on a client. ClassFileServer is a minimal

web server that accepts requests for Java classes. It fills the role of the web server in
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Listing 2.3: ComputeEngine

1 package engine;
2
3 import java.rmi.registry.LocateRegistry;
4 import java.rmi.registry.Registry;
5 import java.rmi.server.UnicastRemoteObject;
6 import compute.Compute;
7 import compute.Task;
8
9 public class ComputeEngine implements Compute {

10
11 public ComputeEngine() {
12 super();
13 }
14
15 public <T> T executeTask(Task<T> t) {
16 return t.execute();
17 }
18
19 public static void main(String[] args) {
20 if (System.getSecurityManager() == null) {
21 System.setSecurityManager(new SecurityManager());
22 }
23 try {
24 String name = "Compute";
25 Compute engine = new ComputeEngine();
26 Compute stub = (Compute)
27 UnicastRemoteObject.exportObject(engine, 0);
28 Registry registry = LocateRegistry.getRegistry();
29 registry.rebind(name, stub);
30 System.out.println("ComputeEngine bound");
31 } catch (Exception e) {
32 System.err.println("ComputeEngine exception:");
33 e.printStackTrace();
34 }
35 }
36 }
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Listing 2.4: ComputePi

1 package client;
2
3 import java.rmi.registry.LocateRegistry;
4 import java.rmi.registry.Registry;
5 import java.math.BigDecimal;
6 import compute.Compute;
7
8 public class ComputePi {
9 public static void main(String args[]) {

10 if (System.getSecurityManager() == null) {
11 System.setSecurityManager(new SecurityManager());
12 }
13 try {
14 String name = "Compute";
15 Registry registry =
16 LocateRegistry.getRegistry(args[0]);
17 Compute comp = (Compute) registry.lookup(name);
18 Pi task = new Pi(Integer.parseInt(args[1]));
19 BigDecimal pi = comp.executeTask(task);
20 System.out.println(pi);
21 } catch (Exception e) {
22 System.err.println("ComputePi exception:");
23 e.printStackTrace();
24 }
25 }
26 }

Figure 2.1. It listens at port 2001, which codebase reflects. This RMI implementation

requires ClassFileServer so that engine server object can request and download the

Pi application.

2.2 MAGE

MAGE provides programmers with the class MageMobileObject. When an instance

of MageMobileObject is invoked, all of an invocation’s parameters, in particular the

instance itself (the receiver of the invocation), are mobile. This means an application can

deploy classes, and their code, simply by instantiating instances of MageMobileObject
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Listing 2.5: Running ComputeEngine

[barr@ido apps]$ ./rmi-pi-run -s
Starting rmiregistry
rmiregistry&
Starting ComputeEngine server
(java -jar rmi-pi-server.jar)
ComputeEngine bound

Listing 2.6: Running RMI ComputePi

[barr@segou rmi]$ run -j . -c ido 100
Starting ClassFileServer
(java -jar ./rmi-pi-classserver.jar&)
Starting Pi client
(java -Djava.rmi.server.codebase=http://segou.cs.ucdavis.edu:2001 \
//home/barr/work/mage/dev/trunk/app/pi/rmi/classes/ -jar \
./rmi-pi-client.jar ido 100)
3.141592653589793238462643383279502884197169399375105820974 \
9445923078164062862089986280348253421170680

and invoking their operations.

Listing 2.7 illustrates how MAGE simplifies the server-side of the RMI tutorial. MAGE

transparently manages mobile object stubs, so there is no need to explicitly exchange them

in the application code. Further, the client and server have no need to statically share the

name of a stub. A MAGE server simply executes the methods of mobile objects that visits

it, so MAGE dispenses with RMI’s shared interfaces, such as Compute.

The only programmer-visible action here is to initialize the MAGE infrastructure on line

13. The corresponding activity in RMI occurs implicitly when the server publishes engine

via UnicastRemoteObject.exportObject, on lines 26-7 of Listing 2.3.

MAGE directly supports mobility. Thus, there is no server object, like engine in the

RMI solution. Nor is there any need of the cumbersome indirection of the Task interface to

move the Pi class to the server. Instead, Pi extends MageMobileObject and moves to

the server, as we see in Listing 2.8.

MAGE’s version of ComputePi dispenses with the shared name and any interactions

with the rmiregistry. It adds the declaration and binding of an REV mobility attribute,
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Listing 2.7: MAGE Server Initialization

1 package server;
2
3 import java.rmi.RemoteException;
4 import mage.MageServer;
5
6 public class StartMage {
7
8 public static void main(String[] args) {
9 if (System.getSecurityManager() == null) {

10 System.setSecurityManager(new SecurityManager());
11 }
12 try {
13 MageServer.init();
14 System.out.println("Mage Initialized");
15 } catch (Exception e) {
16 System.err.println("Unable to initialize Mage:");
17 e.printStackTrace();
18 }
19 }
20 }

on lines 11 and 13. Chapter 3 is dedicated to mobility attributes. For our immediate

purposes, a mobility attribute moves an object when that object is invoked. Here, the

mobility attribute rev takes the server’s name arg[0] as its target. When the Pi instance

task is invoked on line 14, rev moves it to the server where it executes. After printing out

the result, main calls System.exit(0) because instantiating the task object implicitly

calls MageServer.init() because all MAGE hosts are potentially servers. The exit

call simply mirrors the behavior of the RMI version.
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Listing 2.8: ComputePi in MAGE

1 package client;
2
3 import java.math.BigDecimal;
4
5 public class ComputePi {
6 public static void main(String args[]) {
7 if (System.getSecurityManager() == null) {
8 System.setSecurityManager(new SecurityManager());
9 }

10 try {
11 REV rev = new REV(args[0]);
12 Pi task = new Pi(Integer.parseInt(args[1]));
13 task.bind(rev);
14 BigDecimal pi = task.execute();
15 System.out.println(pi);
16 System.exit(0);
17 } catch (Exception e) {
18 System.err.println("ComputePi exception:");
19 e.printStackTrace();
20 }
21 }
22 }

Listing 2.9: Running a MAGE Server

[barr@ido apps]$ ../dev/trunk/bin/mageregistry
Starting mageregistry
[barr@ido apps]$ java -Dmage.class.path=‘pwd‘/rmi-pi-compute.jar \
-jar mage-pi-server.jar
Mage Initalized.

Under MAGE, only one line in the class Pi changes:

public class Pi implements Task<BigDecimal>, Serializable

becomes

public class Pi extends MageMobileObject

Although the MAGE server that handles incoming HTTP requests for classes is not

programmer visible, it is still present. Under MAGE, class serving functionality is built-in;
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Listing 2.10: Running MAGE ComputePi

[barr@segou mage]$ java -Dmage.class.path= \
/home/barr/work/mage/dev/trunk/app/pi/mage/mage-pi-client.jar \
-Djava.security.policy=client.policy client.ComputePi ido 100
3.141592653589793238462643383279502884197169399375105820974 \
9445923078164062862089986280348253421170680

under RMI, such functionality is application-specific. The RMI implementation provides

it via classserver, which must be explicitly started. The mage.class.path property

sets the path where the MAGE class server looks for classes. The RMI implementation pulls

this setting from the codebase property in Listing 2.6.

For comparison with Listings 2.5 and 2.6, Listings 2.9 and 2.10 contain transcripts of

running the MAGE version of Pi.

2.3 Summary

In this chapter, we have presented Sun’s RMI tutorial, which uses a statically shared interface

and parameter mobility to dispatch a π calculator to a server.

We then re-implemented this application in MAGE more simply. We eliminated the

need for a shared interface, as well as the server-side engine object. We made the Pi class

mobile, instantiated it, and bound that instance to a remote evaluation mobility attribute.

When we invoked that instance, the mobility attribute dispatched the Pi instance to its

remote target for execution. In so doing, we have used mobility attributes without defining

them, or the programming model built on top of them.
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Chapter 3

Mobility Attributes

While high over your heads you will see the best best

Of the world’s finest, fanciest Breezy Trapeezing

My Zoom-a-Zoop Troupe from West Upper Ben-Deezing

Who never quite know, while they zoop and they zoom,

Whether which will catch what one, or who will catch whom

Or if who will catch which by the what and just where,

Or just when and just how in which part of the air!

Dr. Seuss
If I Ran The Circus, 1956

In this chapter, we introduce mobility attributes and define their semantics. We rely on

set theory and operational semantics. Our goal is to capture the essence of MAGE using a

language independent notation to emphasize MAGE’s universality and applicability to a

wide variety of languages.

In Section 3.1, we define the terminology used in this chapter. In particular, we define

execution engine and component.

Section 3.2 analyzes existing programming paradigms in which invocation triggers

component motion. Mobility attributes arose from the realization that these paradigms can
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be characterized by the locations of an invoker and the invoked program component before

and after the invocation or as a pair of hosts — a starting host and a target host.

In Section 3.3, we define primitive mobility attributes to be precisely these pairs, then

show how existing programming paradigms fit into a taxonomy formed from these mobility

attributes. Classifying these paradigms yields a new paradigm, and surprisingly reclassifies

one paradigm as an instance of another. We then show how a programmer can bind these

attributes to a program’s components to control a program’s layout. These primitive mobility

attributes and their related programming model, form the work we presented at ICDCS in

2001 [8].

In Section 3.4, we lift the start and target hosts of primitive mobility attributes to sets

of start and target hosts. This generalization is natural and allows us to relax primitive

mobility attributes to cover a wide variety of configurations. In particular, it eliminates the

need to coerce a primitive mobility attribute when we do not care where a component starts,

i.e. where it receives an invocation, but only that it execute on a specified target.

Dynamic attributes allow programs to use mobility attributes to define migration policies

that react and adapt to a program’s environment at runtime. When policies, such as “execute

on lightly loaded systems” and “execute on systems that have a resident DBMS,” complement

each other, MAGE allows a programmer to compose them. Section 3.5 presents mobility

attribute composition and shows how a programmer might use composition to create complex

migration policies using simpler attributes as building blocks.

All the attributes presented to this point are client-side attributes. In Section 3.6, we

introduce server-side mobility attributes that bind directly to a component. These attributes

allow a component, in its role as a server, input into where it executes. For example,

programmers may wish, due to security concerns, to restrict where a component moves and

executes. Server-side mobility attributes allow them to express such policies.
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3.1 Terminology

Definition 3.1.1 (Execution Engine). An execution engine or host runs code. Execution

engines do not nest. They define a scope in which resources exist.

Remark. Because “execution engine” is a cumbersome phrase, we variously use host and

location as synonyms for it in the text that follows wherever that substitution is clear from

context. An execution engine may be realized as a virtual or physical machine, or as a single

system image (SSI) cluster. The fact that execution engines do not nest implies that they

do not move.

Definition 3.1.2 (Component). A component is a nonempty set of functions, and their

associated data state. Components do not nest. Components reside within an execution

engine. Components can move, or change execution engines. An active component has

execution state — stack and register file. An inactive component has no execution state.

Remark. An active component is an actor [41]; it has its own thread of control. Since an

inactive component is just an active component with no execution state, we assume active

components below, unless otherwise noted.

We have kept these definitions simple to closely reflect existing practice. Next, we use

them to model existing distributed programming paradigms, as well as propose new ones.

3.2 Integrating Invocation and Mobility

Listing 3.1, which repeats Listing 1.1 in Chapter 1, is an invocation statement in a component

of a distributed program. As before, c is a mobile component; i is the invoker. This invocation

statement differs from a local procedure call (LPC), in that i and c are not necessarily

collocated. What must happen when i calls an operation on c? Since c could be at a different

host than i, the system must find it. Let H denote the set of all hosts that comprise a

MAGE system. Let C be the set of all components in a distributed program, so c, i ∈ C1.
1C is the vertex set of Figure 1.1a; H is the vertex set of Figure 1.1b.
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When i and c are not collocated, i needs some way to identify c. Let I be the set of unique

identifiers for C. If c is at the remote host r ∈ H, then the system must marshal the call’s

arguments2, forward the arguments to the component, execute the call at r, and return the

result to the invoker i.

Listing 3.1: An Invocation

x = c.f(p1, p2);

When the location of the remote component is fixed and statically known, the find is

superfluous and we have a remote procedure call (RPC), as defined by Birrell et al. [13].

Figure 3.1 depicts an RPC invocation. Let find : I → H be the function that returns a

component’s location. When find(idi) = l is the local host of i, then R = H − {l} is the set

of all hosts remote to l. From l, the invoker i calls c, which runs on r ∈ R. While running, c

accesses the resource d. When c finishes the computation, it returns the result to i. A remote

method invocation (RMI) is an object-oriented form of RPC in which the remote object is

an implicit parameter of the procedure call. Although Birrell et al.’s original definition of

RPC and Java’s RMI differ in some technical details, we give pride of place to RPC since it

came first and consider it the superset and RMI the subset3. Further, we use RMI to denote

any implementation of RPC in an object-oriented language, and consider Java’s RMI an

implementation of RMI in Java.

Now consider adding component mobility to the programming model. Find is no longer

static. Component location becomes a primitive and requires operators to manipulate it.

These operators can either be explicit or implicit. An obvious explicit operator is move(c, t),

which moves the component c to the target t ∈ H.

An elegant, implicit operator on component location integrates mobility and invocation:

receiving an invocation triggers code motion. Component invocation is a natural time
2Marshalling is the process of translating an invocation’s parameter types and actuals into a format

suitable for network transfer.
3Birrell et al.’s definition of RPC identified methods by both name and version to ease the deployment of

new behavior. Java’s RMI does not provide this functionality. On the other hand, as discussed in Chapter 2,
an invocation in an object-oriented language can contain actuals that are subclasses of a formal in a method’s
signature. If such a subclass is unknown to a component when that component receives the invocation, RMI
allows the component to discover and download the subclass, and its function definitions.
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to move a component for two reasons: first, the principle of locality assures us that the

component is in use and that the work required to move it is less likely to be wasted and,

second, at that time we can best decide where to move the component, since an application

can use its state at the time of the call as well as the current state of the system. In short, the

location of a component is of no import until the component is needed. Further, integrating

mobility with invocation eliminates the clutter of explicit move calls in an application’s

source code: it separates an application’s core logic from its mobility aspect.

Figure 3.2 depicts all possible single-step moves an invoked component can make relative

to its invoker. In Figure 3.2, hc ∈ H is component c’s host when the call reaches it, and

h′c ∈ H is the host on which it executes. When hc = h′c, the move arc becomes a self-loop

on hc, i.e. a null-move, and Figure 3.2 reduces to RPC.

In addition to RPC, three of the possible invocation-triggered code motion patterns

implicit to Figure 3.2 are well-known, albeit as “mobile design paradigms,” or architec-

tures [16]. In MAGE, we view these patterns as building blocks from which to construct
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Figure 3.4: Remote Evaluation

such architectures, not architectures themselves. We describe these three patterns next.

Figure 3.3 depicts Code on demand (COD). In COD, a function invocation requires

remote code c to execute locally because c requires the resource d. The code moves from the

remote site to the caller’s site. In the client-server model, COD allows the server to extend

the capabilities of the client. Java applets [6], JavaScript [112], and Adobe Flash [110]

are popular instances of this mobility pattern. In terms of Figure 3.2, COD occurs when

l 6= hc ∧ l = h′c.

Figure 3.4 depicts Remote evaluation (REV) [93]. In REV, the component is initially

local to the invoker, then moves to a remote target where it executes and accesses d. In

the client-server model, REV allows the client to extend the capabilities of the server.

Dispatching an SQL query to a database server is an example of REV. We also used REV

in Chapter 2, when we discussed Sun’s RMI example and converted it to MAGE. In terms

of Figure 3.2, REV occurs when l = hc ∧ l 6= h′c.
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Figure 3.5: Mobile Agent

Figure 3.5 illustrates Mobile Agent 4 (MA) [21, 99]. MA makes most sense when resources

are distributed over time or space. Here, c uses both d0 and d1. In MA, the invoker calls

itself — the invoker is the component. Thus, the component is necessarily active, unlike

COD and REV, and l changes as i moves. In terms of Figure 3.2, MA occurs when

l = hc ∧ l′ = h′c ∧ i = c.

3.3 Primitive Mobility Attributes

At this point, we have exhausted all patterns implicit to Figure 3.2 that have appeared

in the literature and been named, not all the patterns it contains. These patterns can be

captured as a pair of locations: the location at which a component receives an invocation

and the location at which it executes that invocation. These pairs uniquely identify each

pattern. In particular, they specify each pattern we have discussed so far. For example,

invocation receipt at host r and execution at host l concisely defines COD.

After an invocation, these pairs phenomenologically describe which paradigm a particular

invocation used. Specified before an invocation, these pairs can select the paradigm an

invocation must use. Distributed systems are complex. Mobile components make them

more so. Controlling which paradigm an invocation uses helps the programmer manage that

complexity.

Primitive mobility attributes reify these pairs; they specify the host, start, at which a
4Carzaniga et al. calls this pattern mobile agent. We would prefer to eschew the word agent because of

its AI connotations. However, the use of agent in the name of this pattern has gained widespread currency in
the literature, so, to avoid confusion, we follow convention. In this thesis, our focus is mobility; whether or
not the code is “intelligent” does not concern us.
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Figure 3.6: Mobility Attribute Binding

component must receive an invocation and the host, target, at which it must execute that

invocation. Mobility attributes apply before an invocation and control which paradigm an

invocation uses. An attribute’s start and target pair are constraints that are enforced after

an invoker binds a mobility attribute to a component in its namespace. After a mobility

attribute has been bound, the component’s actual location must match the attribute’s

starting location or the component does not move, the invocation fails, and the invoker is

notified. Upon receipt of an invocation, a component moves to the attribute’s target host,

when it is not already at that host, before executing.

In Figure 3.6a, nodes are components and edges denote communication. The edges

combine the arc from an invoker to a component along which an invocation travels and the

corresponding back-arc along which the result returns, as depicted in the pattern figures,

such as Figure 3.4 (REV) above. Mobility attributes bind to program components in the

context of an invoker and intercept outgoing invocations, as shown in Figure 3.6b.

Definition 3.3.1. MAGE is the programming model that incorporates mobility attributes

as programmer visible primitives.

Thinking about mobility attributes in terms of before and after pairs helps us see new

attributes implicit to Figure 3.2. For hx, hy ∈ H whenever hx 6= hy in the pair (hx, hy), an
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Figure 3.7: Move Before Execution

invoked component moves. The new attribute move before execution (MBE) arises from this

observation. MBE generalizes COD, REV, and MA and encompasses all primitive mobility

attributes in which a component moves. Figure 3.7 depicts MBE. In terms of Figure 3.2,

MBE only requires hc 6= h′c. From hx = hy, we form the attribute execute in place (EIP)

which generalizes LPC and RPC, those attributes in which the component does not move.

Together, EIP and MBE partition the set of all single step component moves in a network

relative to an invoker, as depicted in Figure 3.2. If we view the set of mobility attributes as a

relation R, EIP is the set of all reflexive pairs in R, i.e. all subsets where if (x, y) ∈ R, x = y;

while MBE is the set of all irreflexive pairs in R, or all subsets where if (x, y) ∈ R, x 6= y. In

MAGE, we assume that EIP is always allowed: that is, the null move (a self-loop) is always

allowed.

find(idc) at
Attribute Invocation Execution Notes
EIP h h

LPC l l h = l
RPC r r h = r

MBE hx hy hx 6= hy

COD r l hx = r ∧ hy = l
REV l r hx = l ∧ hy = r
RMC rx ry rx, ry ∈ R ∧ rx 6= ry

Table 3.1: Primitive Mobility Attributes
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Mobility attributes bring into focus and define a taxonomy that encompasses both these

new attributes and the mobile code paradigms previously defined in the literature. Table 3.1

depicts this taxonomy.

Table 3.1 does not include MA, because REV and MA are the same with respect to

mobility. MA is REV with i = c. Thus, MA is restricted to REV on active components, but

this hardly seems to merit consideration as a distinct mobility attribute.

At first glance, it might seem strange to see LPC in Table 3.1. It is included because its

pair (l, l) is one of the combinations inherent to Figure 3.2. Further, LPC arises naturally in

distributed applications. Consider invocations on a component collocated with an invoker

via COD. Every invocation other than the first one is LPC; indeed, that is the point of COD.

We further motivate LPC below, in Section 3.4.3.

The Notes column in Table 3.1 shows how each attribute specializes either EIP or MBE.

The remote mobile code (RMC) attribute is the pair (rx, ry), for rx, ry ∈ R, rx 6= ry. It

differs from REV, in that it expects to find its bound component at rx, not l. In other words,

it restricts MBE to motion between two hosts remote to the invoker.

3.3.1 Operational Semantics

The operational semantics for a programming language describes how to interpret a valid

program as sequences of computational steps. These sequences then are the meaning of the

program. Often these steps are defined in terms of a state transition system that abstractly

captures the state of a program as it executes [82, 113]. Operational semantics has two

forms. Big-step operational semantics relates programs to a final configuration, ignoring

intermediate states. Small-step operational semantics incorporates every state transition

in its sequence. Here, we present the big-step operational semantics of primitive mobility

attributes.

To model the state of a distributed system, we first project the state of a single machine

onto an array. We concatenate all the machine arrays to form an array that represents

the state of the entire distributed system. To handle machine arrival and departure, we

assume an infinite array and that the block of indices assigned to a machine is never reused:
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when a machine returns to operation after going offline, we assign it a fresh name and a

fresh range of indices5. Since symbolic indices are convenient, let that global state array

be associative. When Loc is the set of symbolic indices and Z is the set of cell values, the

function σ : Loc→ Z models that associative array. The value of the global state array at x

is σ(x) = y. Any change in the contents of any cell generates a new function σ′. Let Σ be

the set of all possible σ functions, or all possible configurations of the global state array, i.e.

all possible states.

Operational semantics models computation as a sequence of state transitions, or steps.

It therefore models time in terms of this sequence. Consider the case of the machine h going

offline. Since h is unique, we can use it to store its status — whether it is off- or on-line —

in global state. Going off-line then means that at some step h was on-line, then a subsequent

step marked it off-line. There is a total ordering of events on a single machine. To order

remote events of interest at a particular machine, we use a Lamport clock to define the

“happened before” relation [56]. Time is either discrete or continuous. If discrete, we can

impose a total ordering on events by ordering the machines, a la Lamport. If continuous,

events have a natural total ordering: Let p be the continuous probability mass function

of an event occurring and a and b be distinct events on distinct machines. Let ta, tb ∈ R

denote the times at which a and b occurred. Then the probability that ta equals tb is 0 since∫ ta
ta
p(tb) dtb = 0.

Definition 3.3.2 (Function Overriding).

σ[x := n](x) = n

σ[x := n](y) = σ(y)

Changing state involves transitioning from one global configuration to another, from σ

to σ′, where σ, σ′ ∈ Σ. When σ(x) = y and a transition changes the value at index x, we

employ Definition 3.3.2 and write σ′ = σ[x := z].
5Section 6.3.4 describes how the MAGE implementation handles this problem.
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Recall that C is the set of all components and that H is the set of hosts6. Let c ∈ C and

h ∈ H. Typically, a component is not collocated with an invoker. Thus, an invoker must

use a unique identifier to refer to and find a component. Let I be the set of component

identifiers. MAGE uses I to query the global state to find a component’s current location,

so I ⊂ Loc. The function find : I → H takes a component identifier and returns that

component’s current location. The function reads global state, so I ⊂ Loc,H ⊂ Z and

find ⊂ σ. Figure 3.11 defines the semantics of find.

Definition 3.3.3 (Primitive Mobility Attribute). A primitive mobility attribute is an element

of the set A = {(s, t) ∈ H ×H}.

Remark. For (s, t) ∈ A, s is the host at which the bound component must receive the

invocation; that is, find(idc) = s must hold when c is invoked. The host t is the host at

which the bound component must execute; that is, find(idc) = t must hold when c executes.

MAGE is a library that extends a host language. Let L denote that language. MAGE

requires L to implement some form of RPC; that is, L must support marshaling, a name

service, components either as objects or closures, and define P , a set of RPC proxies for

components. Below, MAGE assumes L supports exceptions, but this is not essential. MAGE

does not extend L’s type system or require L to provide any other features, not already

mentioned. We do not formally specify the semantics of a proxy-mediated RPC call, but

assume it. Informally, a proxy is generated for a component and has the same interface

as that component. When an operation is invoked on a proxy, the proxy marshals the

operation’s parameters and sends them to its component’s host, which in RPC is immutable.

If execution generates a return value, the proxy unmarshals it before returning it to the

caller.

An RMI proxy contains the host, port pair that identifies its component’s invocation

server and a component identifier the invocation server uses to route an incoming call to

the component. A MAGE proxy additionally contains a mobility attribute binding. That

binding may be null, as when no mobility attribute has yet been bound to a MAGE proxy.
6As before, C is the vertex set of Figure 1.1a; H is the vertex set of Figure 1.1b.
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We denote the null binding as {NULL} and let A′ = A ∪ {NULL}. To add MAGE proxies

to the global state, we define Pm ⊂ Loc, (I × P ×A′) ⊂ Z, and bind : Pm → (I × P ×A′).

Note that bind ⊂ σ. Thus, Pm is the set of MAGE proxy variables. An RPC proxy also

contains a unique identifier for its component, so the MAGE’s proxy’s I component does

not distinguish the two. The I component in the MAGE proxy is lifted out of its RPC

proxy for notational convenience in the rules that follow. The essential difference between

a MAGE and an RPC proxy is the inclusion of A′, which represents a mobility attribute

binding. A MAGE proxy need not always be bound to a mobility attribute. To denote an

unbound MAGE proxy, we bind NULL to it. Thus, A′ represents all possible bindings of

mobility attributes to MAGE proxies, including nonbinding. For the 3-tuple (I × P ×A′),

let x̂i be its ith basis. Initially, no mobility attribute is bound to any MAGE proxy, so

∀pm ∈ Pm, x̂2 •bind(pm) = NULL7. Figure 3.12 contains the rules that define the semantics

of binding a mobility attribute to a MAGE proxy.

Definition 3.3.4 (Judgment). The judgment 〈e, σ〉 ⇓ n means that e evaluates to n in state

σ. We can interpret ⇓ as a function with arguments e and σ.

In operational semantics, an evaluation rule is analogous to the Fitch format in logic,

which divides an argument’s premises from its conclusion using a horizontal line, called the

Fitch bar. The premises are written above the line, the conclusion below [29]. In operational

semantics, the judgments above the bar are hypothesis judgments that must hold before we

can infer that the conclusion judgment below the bar holds.

When a rule has no judgment above the bar, it is a primitive evaluation rule that always

holds.

There are two ways to read an evaluation rule — forward, starting with the hypothesis

judgments, and backward, starting with the conclusion judgment. In the forward direction, if

we know that the hypothesis judgments hold, then we can infer that the conclusion judgment

holds. In the backward direction, they provide a mechanism for evaluating an expression.

Consider Figure 3.13a which contains the evaluation rule that defines the semantics of a
7Here, we use the ith unit basis vector to extract the ith component. Recall that Kronecker delta

δij = 1 if i = j and 0 if i 6= j. Since δij = x̂i • x̂j , x̂i • ~v is the ith component of ~v.
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com ::= L commands
| bind(e, e)
| unbind(e)
| move(e, e)

e ::= L expressions
| h for h ∈ H
| idc for idc ∈ I
| pm for pm ∈M
| (s, t) for (s, t) ∈ A′
| get(e)
| find(e)
| proxy(e)

Figure 3.8: MAGE Grammar Extensions to L

〈h, σ〉 ⇓ h : H 〈p, σ〉 ⇓ p : P 〈(s, t), σ〉 ⇓ (s, t) : A′ 〈idc, σ〉 ⇓ σ(idc) : H

〈pm, σ〉 ⇓ σ(pm) : I × P ×A′

Figure 3.9: Primitive Evaluation Rules

〈e, σ〉 ⇓ idc
〈proxy(e), σ〉 ⇓ σ(pm) : I × P ×A′

Figure 3.10: MAGE Proxy Generation Rule

MAGE proxy-mediated invocation when no attribute is bound to the MAGE proxy pm. In

the forward direction, we see that if no attribute is bound, 〈pm, σ〉 ⇓ (idc, p,NULL), and a

standard RPC invocation on pm’s internal RPC proxy p transitions global state from σ to

σ′, 〈p.f(E), σ〉 ⇓ σ′, then we can conclude 〈pm.f(E), σ〉 ⇓ σ′, that a MAGE proxy-mediated

invocation will also transition the global state from σ to σ′. In the backward direction, we

see that to evaluate any MAGE proxy-mediated invocation we must first lookup up the

current values bound to pm. If no mobility attribute is bound to pm, the next and final step

in evaluating the MAGE proxy-mediated invocation is to evaluate an RPC call.

MAGE extends L with the commands and expressions in the grammars in Figure 3.8.

In operational semantics, commands change state thus causing the transition σ → σ′, while

expressions read state, denoted σ(x) for the variable x.

Figure 3.9 specifies the rules for evaluating the MAGE primitives. In particular, idc and

pm are variables. Figure 3.10 depicts the evaluation rule associated with the MAGE proxy
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〈e, σ〉 ⇓ idc 〈idc, σ〉 ⇓ h
〈find(e), σ〉 ⇓ h

〈e1, σ〉 ⇓ idc 〈e2, σ〉 ⇓ h
〈move(e1, e2), σ〉 ⇓ σ[idc := h]

Figure 3.11: Component Location Evaluation Rules

〈e, σ〉 ⇓ pm 〈pm, σ〉 ⇓ (idc, p, (s, t))
〈get(e), σ〉 ⇓ (s, t)

〈e1, σ〉 ⇓ pm 〈e2, σ〉 ⇓ (s′, t′) 〈pm, σ〉 ⇓ (idc, p, (s, t))
〈bind(e1, e2), σ〉 ⇓ σ[pm := (idc, p, (s′, t′))]

〈e, σ〉 ⇓ pm 〈pm, σ〉 ⇓ (idc, p, (s, t))
〈unbind(e), σ〉 ⇓ σ[pm := (idc, p,NULL)]

Figure 3.12: Primitive Mobility Attribute Evaluation Rules

〈pm, σ〉 ⇓ (idc, p,NULL) 〈p.f(E), σ〉 ⇓ σ′

〈pm.f(E), σ〉 ⇓ σ′

(a) No mobility attribute is bound to pm

〈pm, σ〉 ⇓ (idc, p, (s, t)) 〈find(idc), σ〉 ⇓ h 6= s

〈pm.f(E), σ〉 ⇓ ex

(b) find(idc) 6= s at time of invocation

〈pm, σ〉 ⇓ (idc, p, (s, t)) 〈find(idc), σ〉 ⇓ s 〈move(idc, t); p.f(E), σ〉 ⇓ σ′

〈pm.f(E), σ〉 ⇓ σ′

(c) find(idc) = s at time of invocation

Figure 3.13: Invocation Evaluation Rules
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generator function. Given an idc, the MAGE proxy generator produces a fresh MAGE proxy

that contains the passed idc. A MAGE proxy also contains an RPC proxy. For brevity, we

assume L provides a mechanism for creating a proxy from a component, which the MAGE

proxy generator uses implicitly to assign p to the MAGE proxy it creates. Finally, it assigns

NULL to the mobility attribute field.

Figure 3.11 presents the semantics of find and move which query and modify a component’s

location; Figure 3.12 defines how the bind and unbind commands associate mobility attributes

to proxies, and how the get expression returns a proxy’s current binding.

In Figure 3.13, L defines the semantics of sequence (;) and the semantics of an RPC call,

which we denote p.f . Let E = e0, e1, · · · , en−1 denote the, possibly empty, list of expressions

from which the actuals of a call are derived. Recall Definition 3.1.2: The component c is a

nonempty set of functions and their associated state. By definition, both p and pm must wrap

and export the same set of functions. In Figure 3.13, p.f denotes an RPC proxy-mediated

invocation of f ∈ c.

3.4 Set Mobility Attributes

Primitive mobility attributes throw an exception when their starting location constraint

is not met. What if a programmer wants a component to receive an invocation at one

of two hosts or does not care where the component receives an invocation? What if a

programmer wishes to dynamically control, at invocation, a component’s execution target,

such as choosing from among a system’s lightly loaded machines?

Set mobility attributes provide just this flexibility: they generalize primitive mobility

attributes by lifting the start and target constraints from single hosts to nonempty sets

of hosts. A programmer can define these sets in terms of functions that are evaluated at

runtime.

By allowing the programmer to define the sets at runtime using functions, MAGE allows

the programmer to use mobility attributes to express dynamic layout, or computation

migration, policies. For example, a programmer can define an attribute whose start set
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〈(S, T ), σ〉 ⇓ (S, T )

Figure 3.14: Mobility Attribute Primitive Rule

tracks machines scheduled to be offline for maintenance. Once bound to a component,

invocations that raise the start exception allow the programmer to write code that moves

components off the afflicted system.

In this, MAGE contrasts with other programming models that provide code mobility.

These other models either restrict a program to a small set of static migration policies,

or allow the programmer to express arbitrary migration policies, but at cost of writing

such policies themselves. For example, Java provides RMI, a form of RPC, and COD,

but restricted to inactive components. By default, Java restricts programmers to choosing

between static layout or the code migration policy that COD provides — “execute locally.”

Using sets for the start and target allows MAGE to introduce a continuum of constraints

from all hosts to a single host, i.e. from “don’t care” to a specified host. Indeed, set mobility

attributes are a strict superset of primitive mobility attributes. A mobility attribute whose

start set and target sets have only a single element is a primitive mobility attribute. For

this reason, unless otherwise specified, henceforth, we abbreviate set mobility attribute to

simply “mobility attribute.”

3.4.1 Operational Semantics

Definition 3.4.1 (Mobility Attribute). A mobility attributes is an element of the set

A = {(S, T ) ∈ 2H × 2H}, where S = {h ∈ H | fs(h)} and T = {h ∈ H | ft(h)} for

fs, ft ∈ H → Boolean.

Remark. For (S, T ) ∈ A, S is where the bound component must start; that is, find(idc) ∈ S

must hold when c is invoked; t ∈ T is where the bound component may execute; that

is, find(idc) ∈ T must hold when c executes. If S ∩ T = ∅, then c must move to t ∈ T .

S is a precondition on an invocation. Generalizing the precondition from the single host

precondition of primitive mobility attributes to a set of hosts relaxes the precondition. Under
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〈e, σ〉 ⇓ pm 〈pm, σ〉 ⇓ (idc, p, (S, T ))
〈get(e), σ〉 ⇓ (S, T )

〈e1, σ〉 ⇓ pm 〈e2, σ〉 ⇓ (S′, T ′) 〈pm, σ〉 ⇓ (idc, p, (S, T ))
〈bind(e1, e2), σ〉 ⇓ σ[pm := (idc, p, (S′, T ′))]

〈e, σ〉 ⇓ pm 〈pm, σ〉 ⇓ (idc, p, (S, T ))
〈unbind(e), σ〉 ⇓ σ[pm := (idc, p,NULL)]

Figure 3.15: Mobility Attribute Evaluation Rules

〈e2, σ〉 ⇓ ∅ : H
〈move(e1, e2), σ〉 ⇓ σ

〈e1, σ〉 ⇓ idc 〈e2, σ〉 ⇓ T 〈find(idc), σ〉 ⇓ h ∈ T
〈move(e1, e2), σ〉 ⇓ σ

〈e1, σ〉 ⇓ idc 〈e2, σ〉 ⇓ T 〈find(idc), σ〉 ⇓ h 6∈ T
〈move(e1, e2), σ〉 ⇓ σ[idc := t ∈ T ]

Figure 3.16: Move Operator with Target Set Evaluation Rules

〈pm, σ〉 ⇓ (idc, p,NULL) 〈p.f(E), σ〉 ⇓ σ′

〈pm.f(E), σ〉 ⇓ σ′

(a) No mobility attribute is bound to pm

〈pm, σ〉 ⇓ (idc, p, (S, T )) 〈find(idc), σ〉 ⇓ h 6∈ S
〈pm.f(E), σ〉 ⇓ ex

(b) find(idc) 6∈ S when c is invoked

〈pm, σ〉 ⇓ (idc, p, (S, T )) 〈find(idc), σ〉 ⇓ h ∈ S 〈move(idc, T ); p.f(E), σ〉 ⇓ σ′

〈pm.f(E), σ〉 ⇓ σ′

(c) find(idc) ∈ S when c is invoked

Figure 3.17: Invocation Evaluation Rules
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this definition of a mobility attribute, the “unspecified” or “don’t care” location is H and R

is “don’t care” which remote.

The redefinition of A changes every appearance of (s, t) in the grammar extensions and

evaluation rules defined in Section 3.3.1 must change to (S, T ) to reflect the change in the

definition of mobility attributes. In particular, the primitive evaluation rule for mobility

attributes in Figure 3.9 and the mobility attribute expressions and commands in Figure 3.12

change, as shown in Figure 3.15

As in Figure 3.13, the host language L that MAGE extends defines the semantics

of sequence (;), and the semantics of an RPC call, which we denote with p.f . E =

e0, e1, · · · , en−1 denotes the, possibly empty, list of expressions from which the actuals of a

call are derived. Thus, p.f denotes a proxy mediated invocation of f in the context of the

component identified by idc.

In Figure 3.17, 〈find(idc), σ〉 ⇓ h
?
∈ S checks whether h, the current location of the

component idc names, meets the constraint imposed by the mobility attribute (S, T ). If

h 6∈ S, MAGE throws an exception, as the rule in Figure 3.17b specifies. If the rule in

Figure 3.17c applies, the component c moves, only if it is not already at a host in T , as

defined in Figure 3.16.

3.4.2 Mobility d-Attributes

When we do not care where a component is, we simply find it. This use case motivates the

new attributes listed in Table 3.2. The d suffix refers to the fact that these attributes largely

“don’t care” where the component bound to them is found when invoked. For example,

CODd is that form of COD that does not care where the invoked component is, so long as

that component is not initially local (S = H − {l}) but becomes local and executes locally.

We collectively refer to these attributes as d-attributes.

When a programmer simply wishes to invoke c and does not care where c executes,

we introduce current location evaluation (CLE). Under CLE, a component executes an

invocation at whichever host it receives an invocation. Like EIP, which it generalizes,
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At invocation, At execution,
Attribute find(idc) ∈ S = find(idc) ∈ T = Notes
CLE H H EIP with h = find(idc) ∈ H
FMC H − {hy} {hy} MBE with hx ∈ H − {hy}, hy ∈ {hy}

CODd H − {l} {l}
REVd H − {r} {r}
RMCd H − {l, r} {r}

Table 3.2: Mobility d-Attributes

CLE does not express mobility, but, at the same time, makes sense only in the context of

mobile components, which can move and therefore must be found. Figure 3.18 depicts CLE.

Symmetrically, when a programmer does not care where c starts, so long as it moves to and

executes on the specified host hy ∈ H, we introduce find mobile code (FMC), which is MBE

when the host where the component receives an invocation does not matter, so long as that

location is not the target execution environment. CLE is a synonym for EIPd; FMC is a

synonym for MBEd.

RMCd differs from REVd in that RMCd requires l 6∈ S in addition to the requirement,

implicit to all forms of MBE, that r 6∈ S, i.e. c must move.

invocation

ci

d
hc

non-move

l

result

Figure 3.18: Current Location Evaluation

The d-attributes are clearly more flexible than primitive mobility attributes. This fact

raise the question: “Why not always use d-attributes?” We address this question next.

3.4.3 Coercion via Mobility a-Attributes

Consider an invocation on the component c, bound to an REV mobility attribute ({l}, {r})

that is already at the specified execution target r8. At invocation, the attribute mis-

matches, since find(idc) 6∈ first(REV) = {l}, but would match at execution, since find(idc) ∈
8Since set mobility attributes subsume primitive mobility attributes, we incarnate primitive mobility

attributes, here REV, in set form.
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second(REV) = {r}. MAGE could either

• invoke that component via RPC; or

• notify the application that REV does not apply.

The former approach emphasizes execution location: since c is already at r, let it execute;

who cares how or when c arrived at r? This approach coerces the REV attribute into an RPC

attribute. In general, mobility coercion handles a starting location mismatch by coercing the

mobility attribute into another attribute that has the same execution target and specifies a

starting location compatible with a component’s actual location if possible, thereby allowing

computation to proceed.

The latter approach allows mobility attributes to not only control a program’s layout,

but to function as assertions. Adding mobility (component location) as a primitive to a

programming model necessarily makes that model more complex. As assertions, mobility

attributes allow a programmer to write code that reacts to a program’s layout and enforces

layout invariants. For example, when a programmer has an invoker bind LPC to a component,

the programmer is asserting that the component should be local to that invoker, and, if not,

he wants to be informed. Further, the choice of mobility attribute could reflect lack of trust:

a programmer may not want to use COD and localize code from an untrusted server.

We proposed mobility coercion [8] and, in so doing, ruled out using mobility attributes

as assertions. This decision also muddied the definition of the application of mobility

attributes: when REV coerces to RPC, the actual mobile invocation pattern applied after

the computation completes was RPC, not REV. Thus, the attribute that was bound was not

applied and vice versa. This thesis makes the opposite choice: we preserve the semantics

of mobility attributes as assertions. We do so without losing the convenience of mobility

coercion. The discovery of new categories of mobility attributes allows us to capture coercion

semantics as attributes!

So the short answer to the question — “why not always use d-attributes?” that we posed

above — is “to allow the usage of mobility attributes as assertions.” When the programmer
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At invocation, At execution, At invocation,
Attribute find(idc) ∈ S = find(idc) ∈ T = coerces to CLE when
EH H {h} find(idc) = h

CODa H {l} find(idc) = l
REVa H {r} find(idc) = r
RMCa H − {l} {r} find(idc) = r

Table 3.3: Mobility a-Attributes

does care about a component’s starting location, the programmer can use a primitive mobility

attribute or otherwise restrict S to a subset of H; when he does not, he can use a d-attribute.

However, the FMC derived d-attributes are all forms of MBE and specify movement; that

is, when find(idc) = hx = hy, we have CLE, not FMC. Thus, they allow the programmer

to specify that a bound componenent must move. So, while they are more flexible than

primitive attributes, they still have a role as assertions. Rather than coerce d-attributes to

CLE generally, and lose their meaning as the assertion that a move must occur, we propose

a new class of three attributes each of which coerce to CLE.

Table 3.3 lists these attributes. The category mobility attribute is execute here (EH).

Each of the listed attributes is the corresponding d-attribute plus explicit coercion to CLE.

So, CODa is CODd with explicit coercion; REVa is derived from REVd; RMCa from RMCd;

and EH is a synonym for FMCa. By explicitly incorporating coercion, these attributes

obviate implicit coercion. We call these a-attributes, from execute at.

To this point, we have focused on set mobility attributes that relax S, the set of valid

start locations. CLE is the exception: it relaxes both S and T by setting them both to H.

In general, setting T = Q ⊂ H is useful when one wishes to move the components in the

current working set to Q. In the next section, we turn our attention to mobility attributes

that dynamically generate S and, especially, T .

3.4.4 Dynamic Mobility Attributes

Static migration policies, while more flexible than static layout, limit a programmer’s ability

to write code that adapts to its environment, such as to take advantage of new resources

or make do with fewer. To demonstrate the semantics of MAGE’s support for dynamic
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migration policies, we abstractly redefine the Itinerary mobility attribute first introduced

in Chapter 4.

For any set X, we can define an indicator or characteristic function that indicates whether

an element is a member of subset Y of X [111, 86]. Here, we focus on target sets T that

change over time. The indicator functions, fs and ft, that we introduced in Definition 3.4.1

are a more compact and time-independent way to specify dynamic sets9.

∀h ∈ H, ft(h) =

 true when 0 ≤ i < n ∧ h = itinerary[i++]

false otherwise
(3.1)

MAGE defines the target set T of its default Itinerary in terms of its indicator

function ft(h) as shown in Equation 3.1. An Itinerary attribute has an n length array of

hosts, itinerary. Each invocation of a component through a proxy bound to Itinerary

advances the index i into itinerary. Note that ft has side-effects, since it depends on

the persistence of the index i which counts the invocations of ft. Figure 4.8, in Chapter 4,

depicts the itinerary of c across three invocations, after having been bound to an Itinerary

mobility attribute whose array is (x, y, z).

In addition to illustrating the utility of dynamically generating T , the Itinerary

mobility attribute can also naturally capture the expressivity of dynamic S. Consider this

use case: the programmer who bound Itinerary to c wishes exclusive control over the

placement of c and to be notified, via a StartException, when c is not found at the

previous host in the itinerary. Equation 3.2 defines an fs that accomplishes just this task:

at the ith invocation, it restricts c’s starting location to the target of the i− 1th invocation,

using a trailing index into the target array.

∀h ∈ H, fs(h) =


true when 0 = i ∧ h = s

true when 0 < i < n ∧ h = itinerary[i− 1]

false otherwise

(3.2)

9In fact, MAGE’s Java implementation defines S and T in terms of their indicator functions fs and ft,
which simply return S and T when they are static and we suspect that doing so will be convenient in other
languages as well.
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3.5 Mobility Attribute Operators

As we have seen, mobility attributes can express complex migration policies. To mitigate

this complexity, MAGE allows programmers to compose mobility attributes and reuse their

migration policies. For example, a programmer can compose the CPULoadThreshold

attribute with Evacuate — a mobility attribute that moves components off systems that

are going to be taken down for maintenance — to make a mobility attribute that selects

from among those least loaded systems that will remain online.

Since mobility attributes are pairs of sets, we can use set operations to compose them.

Given x = (Sx, Tx), y = (Sy, Ty) ∈ A, we can form the mobility attribute z = (Sx, Tx ∩ Ty).

When Tx specifies systems with light CPU load and Ty contains those systems that have a

certain resource, like a DBMS, z is the mobility attribute whose policy is “execute on lightly

loaded systems that have a DBMS.”

For convenience, MAGE defines operators to directly compose mobility attributes. Set

operations are not enough, because a programmer may wish to compose two attributes by

relaxing the start sets via union, while taking one target and discarding the other. For this

purpose, we define two operators in Equation 3.3: the C operator simply returns its left

operand, while B returns its right operand.

xC y = x

xB y = y (3.3)

∀(Sa, Ta), (Sb, Tb) ∈ A,

O ∈ {∪,∩,C,B},

(Sa, Ta) OSOT (Sb, Tb) = (Sa OS Sb, Ta OT Tb) (3.4)
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Equation 3.4 defines the binary operators one can use to compose mobility attributes.

For example, (Sa, Ta) ∪SCT (Sb, Tb) = (Sa ∪ Sb, Ta C Tb) = (Sa ∪ Sb, Ta).

To round out its operators, MAGE also lifts set complement to mobility attributes:

∀(Sa, Ta), (Sb, Tb) ∈ A,

!ST (Sa, Ta) = (!Sa, !Ta)

!S(Sa, Ta) = (!Sa, Ta)

!T (Sa, Ta) = (Sa, !Ta) (3.5)

Complementing mobility attributes is useful when it is easier to define, especially at

runtime, the complement of a set than the set itself. For example, say a particular host h

is going off-line. After h goes off-line, H will reflect that fact, but, in the meantime, valid

hosts are !{h}10. Also, the addition of complement allows MAGE to define the set difference

of two mobility attributes in terms of the operators defined here.

To build intuition about this operators, observe that the C and B operators override one

of the operands, ∪ acts to relax the constraints to which it is applied, while ∩ tightens the

constraints on which it operates.

3.5.1 Operational Semantics

MAGE makes these operators available to programs by again extending L’s expression

grammar, as Figure 3.19 depicts. Figure 3.20 defines the operational semantics of these

operators.

3.6 Component Mobility Attributes

To this point, we have considered only client-side mobility attributes. Here, we apply the

client-server paradigm to components with respect to a single invocation: a component
10Section 3.3.1 discusses how operational semantics models time.
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e ::= L expressions
| e oSoT e for oS , oT ∈ {∪,∩,C,B}
| !ST e
| !S e
| !T e

Figure 3.19: Extensions to L’s Expression Grammar for Composition

〈e1, σ〉 ⇓ (S, T ) 〈e2, σ〉 ⇓ (S′, T ′)
〈e1 oSoT e2, σ〉 ⇓ (S oS S

′, T oT T
′), for oi ∈ {∪,∩,C,B},where i ∈ {S, T}

(a) Binary Operators

〈e, σ〉 ⇓ (S, T )
〈!S e, σ〉 ⇓ (!S, T )

〈e, σ〉 ⇓ (S, T )
〈!T e, σ〉 ⇓ (S, !T )
(c) Unary Operators

〈e, σ〉 ⇓ (S, T )
〈!ST e, σ〉 ⇓ (!S, !T )

Figure 3.20: Mobility Attribute Composition Evaluation Rules

may play both roles — client and server — even simultaneously, over the runtime of an

application. Clients, as invokers, define an application’s working set and are often active at

different times, have different resource needs, and therefore apply different layout policies to

a shared server component. Client-side mobility attributes allow different clients to bind

different attributes to their view of the same server component, and thereby naturally meet

this need.

However, when a development project has multiple teams that produce loosely coupled

code or a code base is sufficiently large, the authors of a component may know more about

that component’s needs when it is invoked as a server than the authors of its clients. To

execute correctly, a component, in the server role, may require hosts that have a particular

resource, such as a spectrometer. Even when the clients do, or should, know a server

component’s requirements, server-side mobility attributes are convenient syntactic sugar.

When a component’s clients can agree on a shared policy, server-side mobility attributes

allow programmers to bind a single attribute once in the context of the component, instead

of forcing developers to bind clones of an attribute to each client’s proxy of that server.

Additionally, server-side mobility attributes can specify security policies that restrict where

a component moves and executes.
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Figure 3.21: Component Mobility Attribute Binding

In this section, we present server-side mobility attributes that bind directly to a com-

ponent. Figure 3.21 depicts server-side binding of mobility attributes. When a client-side

mobility attribute also mediates an invocation, its target set T is part of the invocation

message. S does not appear in an invocation message, as its check is enforced at the client

and is thus superfluous at the server. MAGE composes T with the component mobility

attribute’s target set Tc using the operators defined in Section 3.5. Note that find(idc) ∈ S

holds, or no invocation would have been sent.

Definition 3.6.1 (Component Mobility Attribute). A component mobility attribute (CMA)

is an element of the set Tc ∈ 2H ∪ {NULL}.

Remark. Unlike client-side mobility attributes, component mobility attributes do not specify

a set of valid starting hosts Sc for a bound component. Three observations motivate this

difference:

1. Invokers use the S member of a client mobility attribute for assertions; that is, when

find(idc) 6∈ S or an undesirable component layout configuration holds, MAGE notifies

the invoker, which can then react to and correct the problem. The component c can

end up on a host that is undesirable from the point of view of an invoker, because that

invoker competes with other invokers to place c. In contrast, a component mobility

attribute mediates all calls to c, so it can prevent c from ever moving to undesirable

hosts. For instance, a programmer can define the CMA Tc = {acceptable targets} and

bind it to c using ∩ as the mobility attribute operator. Then, no matter what T the

client sends, the CMA will cut it down to its acceptable subset T ∩ Tc.

2. Say we defined CMA to include Sc. Let find(id) = s be the server on which a
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com ::= L commands
| bind(e, e, e)

e ::= L expressions
| c for c ∈ C
| o for o ∈ O

Figure 3.22: Component Mobility Attribute Grammar Extensions to L

component receives an invocation. s ∈ Sc must hold, or c will be unreachable, since

then all invocations will cause c to throw an exception, before ever moving or executing.

Thus, when Sc 6= H, if c ever moves to h ∈ H −Sc, c becomes unreachable and MAGE

provides no way to recover. Therefore, there is a single sensible value for Sc, namely

H. Since there is only one sensible value, we implicitly set Sc to H, which obviates

the need for a start check and for an explicit Sc parameter.

3. Again assume CMA includes Sc. There is no natural recipient for exceptions thrown

when find(idc) 6∈ Sc. This is because of the disconnect between the server-side thread

that bound a CMA to c and threads that invoke c. The server thread cannot reasonably

resolve exceptions raised by the activity of the invoking threads, since it knows nothing

about the invoker’s context. If, on the other hand, we send the exception to the

invoker, the client, who does not know or bind Sc, clearly disagrees since find(idc) ∈ S

or the invocation would not have reached c, and, in any case, can do nothing about

the problem, since it cannot alter the binding of a CMA to c.

So an Sc starting location check does nothing useful; it only creates new ways to shoot

oneself in the foot. Thus, we drop it here.

3.6.1 Operational Semantics

Here, we present the minimal set of rules necessary to define component mobility attributes,

as a delta against the rules already presented. The rules below are either new or extend

existing rules. Let O = {∪,∩,C,B, !}∪{ε} be the operators that compose a client’s mobility

attribute with a component mobility attribute in the server’s context. To denote a null

binding, ε ∈ O.
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〈c, σ〉 ⇓ σ(c) : O × Tc 〈o, σ〉 ⇓ o : O

Figure 3.23: Primitive Evaluation Rules

〈e1, σ〉 ⇓ c 〈e2, σ〉 ⇓ o 〈e3, σ〉 ⇓ T
〈bind(e1, e2, e3), σ〉 ⇓ σ[c := (o, T )]

〈e, σ〉 ⇓ c
〈unbind(e), σ〉 ⇓ σ[c := (ε,NULL)]

Figure 3.24: Component Mobility Attribute Evaluation Rules

〈pm, σ〉 ⇓ (idc, p,NULL) 〈c, σ〉 ⇓ (ε,NULL) 〈p.f(E), σ〉 ⇓ σ′

〈pm.f(E), σ〉 ⇓ σ′

(a) No mobility attribute is bound to c

〈pm, σ〉 ⇓ (idc, p, (S, T ))
〈c, σ〉 ⇓ (o, Tc) 〈find(idc), σ〉 ⇓ h ∈ S 〈move(c, T o Tc); p.f(E), σ〉 ⇓ σ′

〈pm.f(E), σ〉 ⇓ σ′

(b) find(idc) ∈ S when c is invoked

Figure 3.25: Invocation Evaluation Rules

Figure 3.22 extends the grammar in Figure 3.19 which, in turn, extends the grammar

defined in Figure 3.8. It adds operators as terminals and a three parameter bind, where

the new parameter is a mobility attribute operator. Figure 3.23 adds these operators as a

primitives and associates an operator and component mobility attribute with the component

c.

Figure 3.24 makes clear why we need primitive operators: we need to bind them to

components along with the component mobility attribute T ′ to know how to compose T

with the incoming Ti that the invoker specified. Here, c is not the proxy pc, it is the address

of a component.

Figure 3.25 specifies how to compose the client mobility attribute’s target with the

component’s attribute. Figure 3.25a handles the case where no CMA is bound to c. Whether

or not a component mobility attribute is bound is irrelevant to checking find(idc) ∈ S, so we
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do not repeat that invocation rule here. The move command semantics are unchanged.

Figure 3.25b allows a CMA to override an invoker’s T , as when a programmer uses

bind(c,R, T ′) to bind and T ∩ T ′ = ∅. This definition of server-side invocation reduces

the client-side mobility attribute’s T to a hint that the component is free to ignore. A

server component is already free to ignore client invocations and unpublish itself, so giving

it control over its mobility does little to change the power relation between it and its clients.

When c executes on t ∈ Tc∧ t 6∈ T , the invoker i gets its reply from an unexpected source,

and so can discover when its T has been overridden.

3.7 Summary

In this chapter, we have seen how mobility attributes arose from the analytical discovery

that existing distributed programming paradigms that integrate invocation and mobility

can be abstracted to a pair of hosts, or a primitive mobility attribute. We generalized

that pair of hosts to a pair of sets of hosts to form set mobility attributes and showed

how these attributes are usefully more powerful than primitive mobility attributes: they

obviate coercion, and they facilitate both the composition of attributes and the definition of

dynamic, resource-aware attributes, through the definition of indicator functions. We next

described how to dynamically define set mobility attributes using their indicator functions,

and provided three examples drawn from MAGE’s library of mobility attributes to illustrate

the point. We introduced operators on mobility attributes that allow one to compose new

mobility attributes out of other, simpler attributes. Finally, we presented server-side mobility

attributes that allow the authors of components, and not just their users, input into where

their components moves and therefore execution.
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Chapter 4

The MAGE Programming Model

Man is a tool using animal.

Thomas Carlyle
Sartor Resartus, 1834

In this chapter, we present the MAGE programming model, as realized in Java. We

begin with an example.

Email is classically deployed under the client server paradigm. External mail arrives at

the server, which delivers to its clients upon request. Unfortunately, a client often does not

want much of the mail the server delivers to it. When all of the mail server’s clients agree on

what constitutes spam, the server can perform the requisite filtering on their behalf. However,

the clients may not agree: for instance, I may wish to receive emails from Orbitz.com,

while you may not. Moreover, my filtering needs may change over time: once I finalize my

travel itinerary, I may no longer wish to see emails from Orbitz.com. Today’s dominant

solution to this problem is to use message passing. This wastes network resources: it requires

each client to perform their own filtering locally.

Mobile code can optimize and load-balance resource access via collocation. It can also

customize behaviour. Given mobility, I can dispatch a personalized filter to the server. In

so doing, I trade local work and network utilization for work at the server. Stamos et al.

Orbitz.com
Orbitz.com
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Listing 4.1: Mobility Attribute Usage

1 EmailFilterImpl efi = new EmailFilterImpl();
2 EmailFilter ef = (EmailFilter)
3 MageRegistryServer.bind("emailfilter", efi);
4 REV rev = new REV("mailServer");
5 ef.bind(rev);
6 ArrayList mail = ef.getMail();
7 RPC rpc = new RPC("mailServer");
8 ef.rebind(rpc);

proposed remote evaluation (REV)1 to solve such problems [93]. REV occurs when a client

sends code to a server for execution.

In MAGE, a programmer uses mobility attributes to control where the components of

his application execute in a network. In Listing 4.1, EmailFilter is an interface that

defines getMail(), which returns a filtered list of emails. EmailFilterImpl is a mobile

class that implements EmailFilter. All distributed systems, including MAGE, comprise

a registry service that tracks the location of resources, such as mobile objects. Publishing

is the act of binding a name to a resource in the registry; it makes the resource available

within the system. On lines 2–3, the programmer publishes efi by binding it to the name

“emailfilter” in the MAGE registry. The MageRegistryServer.bind call creates

and returns ef, a proxy to efi. On line 4, the programmer creates an REV attribute whose

execution target is named, imaginatively enough, “mailServer,” then binds it to ef on

line 5. The invocation of getMail() at line 6 causes efi to move to mailServer where

it executes and returns a filtered set of emails.

Mobility attributes not only change the location of a mobile object, they also make

assertions about where that mobile object should be when they are applied. In Listing 4.1,

the REV attribute asserts that efi, to whose proxy the attribute is bound, is initially local.

efi is no longer local, if the programmer wishes to use efi in place at mailServer,

she must replace ef’s binding to an REV attribute with a remote procedure call, or RPC,

attribute, as shown on lines 7–8. If a method were called on ef while it was still bound to
1REV was first introduced in Section 2.1 and is discussed in detail in Section 3.2.
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opi
invocation

result

Figure 4.1: RMI Proxy and Remote Object

an REV object, but after efi had already moved, the call would inform the programmer of

the assertion violation by throwing StartException. If the programmer simply wanted

efi to execute at mailServer and did not care where efi was when it received the call,

she could have chosen to bind REVa, which expresses exactly this policy: it specifies a target,

but imposes no restrictions on mobile object’s location when that object receives a call. For

more details about REVa and related attributes, please refer to Section 3.4.3.

This example introduces three mobility attributes — RPC, REV, and REVa, the mobile

class EmailFilterImpl, a proxy to an instance of that class, and associates them with

bind operators. Below, we explore these primitives and their operators.

4.1 Primitives

To ease deployment, MAGE is implemented as a library. Built on Java, MAGE provides all

the usual Java statements and expressions, as well as Java’s panoply of types, such as int,

char, and plain old Java objects (POJOs). To Java’s types, MAGE adds mobile objects,

proxies to those mobile objects, and mobility attributes.

4.1.1 Mobile Objects

Figure 4.1 describes the relation between a proxy and a remote object. A remote object is an

object that can publish itself to a name service and receive remote invocations. An instance

of the proxy design pattern [32], a proxy marshals an invocation, including its parameters,

and sends it to the remote object.

In RMI, remote objects cannot be marshaled; instead, they are replaced with proxies.
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Listing 4.2: MobilityAttribute

1 public Set<String> starts(Method m) throws StartException
2
3 public Set<String> targets(Method m) throws TargetException

POJOs that implement Java’s Serializable interface can be marshaled, but cannot be

invoked remotely. MAGE mobile objects are a modified version of RMI’s remote objects

that can both receive remote invocations and be marshaled. MAGE moves all the heap

objects reachable from the fields of a mobile object. It does not move the stack, registers, or

heap reachable from either the stack or registers of a thread executing within that mobile

object. Thus, MAGE supports weak mobility [16]. In RMI, a remote class implements Java’s

Remote interface; in MAGE, a mobile class extends MageMobileObject.

4.1.2 MAGE Proxy

A MAGE proxy is a Java RMI proxy that supports the binding operations and contains a

mobility attribute field.

4.1.3 Mobility Attributes

MAGE is not unique in providing mobile objects; there are many such systems. The mobility

attribute is MAGE’s unique primitive. As we learned in Chapter 3, a mobility attribute is a

pair of sets — S, the set of hosts at which a bound object can receive an invocation, and T,

the target set of hosts at which we want a bound object to execute.

A mobility attribute binds to a mobile object and its proxies. By binding to the proxies

of a mobile object as well as directly to the mobile object itself, MAGE allows different

invokers to apply different placement policies to their interactions with the mobile object,

without incurring the cost of competing over directly binding to the mobile object itself.

We have realized a mobility attribute as an instance of the MobilityAttribute base

class, shown in Listing 4.2. The starts method defines a mobile object’s start set S; it is an

assertion about where a mobile object should be when the mobility attribute is applied. For
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Listing 4.3: Method Granular Binding

1 @Override
2 public Set<String> targets(Method m) throws TargetException {
3 Set<String>ret = new HashSet<String>();
4 if (method != null && method.equals(m)) {
5 ret = targets();
6 }
7 else
8 ret.add(MageRegistryServer.getLocalHost());
9 return ret;

10 }
11
12 abstract public Set<String> targets() throws TargetException;

an application whose objects can move, such assertions are a useful control mechanism. When

this assertion is not met, MAGE throws StartException. The targets determines

where the object should move before executing; that is, it defines T. Thus, this method is

the principal means by which a MAGE application adapts to its environment. As we will see

in Section 4.3.3, a mobility attribute can interact with its environment to select a suitable

set of execution targets.

Programmers can use the Method parameter in both starts and targets to tie a

mobility attribute’s behavior to the method invoked, rather than the set of methods defined

by an interface. Usually a programmer uses the Method parameter to ignore all but a subset

of the methods in an interface thus allowing method granular binding of mobility attributes.

Listing 4.3 illustrates how one can use the Method parameter of starts and targets to

bind to a specific method in an interface. This code is taken from OneMethodMobAttA, a

class in MAGE’s ml (for “MAGE library”) package which contains all mobility attributes that

MAGE defines. Its constructor takes the method instance to which to bind and delegates

the actual implementation of the target selection logic to its subclasses via the abstract

targets method. The if-else forwards the call to targets if the call was made on the

bound method, otherwise it converts the call into a local procedure call. The if-else can

be expanded to select any partition of an interface’s methods, not just a single method as

shown here.
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Figure 4.2: Mobility Attribute Class Hierarchy Overview

4.2 Mobility Attribute Class Hierarchy

The MAGE programming model rests upon mobility attributes. In this section, we present

the Java class library of predefined mobility attributes MAGE provides. Figure 4.2 presents

a high-level overview of the class hierarchy of MAGE’s library of mobility attributes. The

triangles represent subtrees, which we address in turn with dedicated figures below. Static

attributes are those that implement a migration policy that is independent of the runtime

environment of the program; while dynamic attributes are those that express migration

policies that interact with the environment.

Recall that H is the set of hosts that comprise a MAGE system. For an invoker, l ∈ H

is the invoker’s local host and R = H − {l} is the set of hosts remote to that invoker. In the

figures discussed in the section, r ∈ R and, in set theoretic terms, Set<String> represents

the type 2H .

4.2.1 Primitive Mobility Attributes

Figure 4.3 depicts primitive attributes, described in Section 3.3, implemented as single-

ton set mobility attributes. The base class MobilityAttribute defines the starts

and targets methods. The class StaticMobilityAttribute defines an immutable

set of valid starting locations S and an immutable set of valid targets T, then overrides
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Figure 4.3: Primitive Attributes

starts(Method m) to return S and targets(Method m) to return T. The method

init is abstract in StaticMobilityAttribute. EIP defines init to check that its

impose immobility; MBE’s init similarly checks for mobility.

These attributes do not vary their behavior with resource utilization and layout, but

rather unconditionally apply their starting host test and move (or not) their bound object.

Although a MAGE application can still use these attributes to dynamically adapt to its

environment via judicious binding and rebinding, doing so intersperses logic to manage

the application’s layout with the application’s domain-specific logic. Fortunately, MAGE

provides an alternative — dynamic mobility attributes that both isolate layout logic and

react to their environment. We describe how to use these attributes in Section 4.3.3.

EIP instances are attributes that do not move an object to which they are bound. Here,

the two subclasses are assertions. An LPC attribute differs from a local procedure call in

that it asserts that a mobile object bound to it is local; an RPC attribute differs from a

remote procedure call in that it asserts that a mobile object to it is at the remote host r. If

these assertions fail, invocations on the bound object throw StartException.
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Listing 4.4: The RPC Class

1 package ml;
2
3 import java.util.HashSet;
4 import ms.MageServer;
5
6 public class RPC extends EIP {
7 public RPC(String t) throws MobilityAttributeException {
8 String localHost = MageServer.getLocalHost();
9 if (t.equals(localHost))

10 throw new MobilityAttributeException(
11 "RPC: localhost " + localHost + " passed as target"
12 );
13 T = new HashSet<String>();
14 T.add(t);
15 init(T);
16 }
17 }

MBE instances, in contrast, are attributes that must move the object to which they are

bound, if that object meets their starting host condition. The COD attribute realizes code

on demand [16] and requires that a bound object start at r and move to the invoker’s host

before executing; REV requires that a bound object start at invoker’s host and move to

the remote target r before executing. The remote move code (RMC) attribute requires the

bound object to move between two distinct hosts remote to the invoker. We introduced and

discussed the semantics of these attribute in Section 3.2.

A programmer can either instantiate and bind an attribute MAGE provides, such as

one in Figure 4.3, or define their own. To do that, the programmer need only extend an

attribute class and define the starts(Method m) and targets(Method m) methods.

Their definitions can be quite simple or arbitrarily complicated, as MAGE imposes no

restrictions on the bodies of these methods.

Listing 4.4 contains MAGE’s definition of the RPC attribute, which we used in Listing 4.1,

the example that opens this chapter. RPC’s constructor checks that the passed in target

location t is not local. If it is local, RPC throws MobilityAttributeException, the
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Listing 4.5: EIP’s starts(Method m) and targets(Method m) Methods

1 public Set<String> starts(Method m) {
2 return S;
3 }
4
5 public Set<String> targets(Method m) {
6 return T;
7 }

Figure 4.4: d-Attributes

base class of StartException and TargetException. Then constructor adds t to T,

which RPC inherits from StaticMobilityAttribute. The init method is inherited

from EIP and sets S equal to T, to enforce nonmovement.

RPC inherits its starts(Method m) and targets(Method m) methods from EIP.

Listing 4.5 gives their definitions. EIP instances simply return the field, a set of strings,

associated with the valid starting locations or desired targets, as appropriate.

4.2.2 The d- and a- Mobility Attributes

Figure 4.4 depicts d-attributes, described in Section 3.4.2. The d-attributes differ from the

primitive attributes in that they relax the starting location requirement embodied by S.

The FMC subclasses still require movement to occur. The a-attributes address this issue: a
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Figure 4.5: a-Attributes

Figure 4.6: StaticPartition

programmer uses them when she does not care where a component starts out or whether

it moves, just so long as it executes on the target. These attributes effectively ignore S by

setting it to H, and are semantically equivalent to explicitly moving the invoked component

to the execution target prior to its execution. Figure 4.5 depicts the a-attributes, which

were introduced in Section 3.4.3.

Figure 4.6 depicts the StaticPartition attribute. Unlike primitive, d-, and a-

attributes, this static attribute is not derived from distributed invocation paradigms. The

StaticPartition attribute bipartitions H. When a programmer creates an instance

of StaticPartition in which S = T and binds it to a component, he is asserting that
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Figure 4.7: Dynamic Mobility Attribute Class Hierarchy

that component is in S. When a programmer creates an instance of StaticPartition

in which S = H 6= T , she forces components bound to that instance to move to T .

StaticPartition is especially useful as a filter used to create a more complicated mobility

attribute using mobility attribute operators (Section 4.4.2).

4.3 Dynamic Mobility Attributes

The mobility attributes presented so far immutably define their S and T sets. In Figure 4.7,

we present dynamic attributes, attributes whose S and T sets change.

4.3.1 The Itinerary Mobility Attribute

When building a distributed application from mobile objects, programmers often write code

to control the route a mobile object takes while moving through the network. So often, in

fact, that such code has been identified as the itinerary pattern [101]. MAGE represents the

itinerary pattern as an Itinerary mobility attribute.

Listing 4.6 contains the definition of MAGE’s Itinerary attribute. An Itinerary

attribute has an ArrayList<Set<String>> of hosts, itinerary. Each invocation of a

mobile object through a proxy bound to Itinerary advances the index i into itinerary.

Itinerary binds to all methods in a MAGE interface, and thus ignores its Method

parameter. Figure 4.8 depicts the itinerary of c, starting from s, across three invocations,

after having been bound to an Itinerary mobility attribute whose list is (x, y, z). If
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Listing 4.6: The Itinerary Class

1 package ml;
2
3 import java.lang.reflect.Method;
4 import java.util.ArrayList;
5 import java.util.Set;
6
7 import ms.MageRegistryServer;
8
9 public class Itinerary extends StaticMobilityAttribute {

10
11 private static final long serialVersionUID = 1L;
12 protected ArrayList<Set<String>> itinerary;
13 protected int index;
14
15 public Itinerary(ArrayList<Set<String>> itinerary)
16 throws MobilityAttributeException
17 {
18 this.itinerary = itinerary;
19 index = 0;
20 // Set S to the set of all known MAGE VMs.
21 S = MageRegistryServer.getVMs();
22 init();
23 }
24
25 protected void init() throws MobilityAttributeException {
26 if (itinerary == null || itinerary.size() < 1)
27 throw new MobilityAttributeException("Empty Itinerary");
28 }
29
30 @Override
31 public Set<String> targets(Method m) throws TargetException {
32 if (index < itinerary.size())
33 return itinerary.get(index++);
34 else
35 throw new TargetException("Itinerary: array exhausted.");
36 }
37 }
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Figure 4.8: Itinerary Mobility Attribute in Action

desired, a programmer can define Itinerary instances whose lists contain repetitions, such

as (x, x, y, z, z).

Itinerary contains a list of sets of hosts. When this is a list of singletons, the attribute

realizes a standard itinerary. Since Itinerary sets S = H, it does not care where its

component is before application, and is useful in the context of a component that an invoker

shares with other invokers and therefore does not know where the component may be prior to

an invocation. When a component is not shared and the programmer wants complete control

over the component’s itinerary, she can use FixedItinerary which defines starts to

return the last used set in the itinerary array.

ItineraryMA takes an array of mobility attributes, through which it steps to form the

itinerary. Since any one of its constituent mobility attributes could be dynamic, we have

included it here.

4.3.2 The MajorityRules Mobility Attribute

A system built from mobile components is susceptible to the problem of moving its compo-

nents so frequently that the cost of that movement outweighs the benefit of the resulting

layout. When this happens, movement impedes useful work and the time-to-completion

of services provided by the system suffers. By analogy to page thrashing [23], we call
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Figure 4.10: Component Migration Thrashing

this problem migration thrashing. In the limit, migration thrashing leads to a form of

livelock [117] in which the system does nothing but move its components.

Figure 4.9 depicts a scenario that can lead to migration thrashing. The mobile objects

a, b, c ∈ C are interdependent: they represent computations and associated state that should

be collocated. Their pairwise dependency manifests itself as a cycle in the call graph. The

programmer saw their pairwise interdependence, but not the cycle, and incorrectly bound

COD to each mobile object’s proxy to its neighbor.

Figure 4.10 depicts what happens when COD applies and the invocation order a →

b.f, c→ a.f , and b→ c.f occurs. In Figure 4.10d, the mobile objects have swapped hosts

but are otherwise in the same configuration. As long as these mobile objects are scheduled

in this order, migration thrashing will continue.
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Listing 4.7: MajorityRules

1 package ml;
2
3 import java.lang.reflect.Method;. . .
4
5 public class MajorityRules extends MobilityAttributeA {
6
7 private static final long serialVersionUID = 1L;
8 protected Set<String> components; // The set of components to collocate.
9 protected Map<String,Integer> countByHost;

10 protected ResourceManagerServer rms;
11
12 public MajorityRules(Set<String> components)
13 throws MobilityAttributeException
14 {
15 if (components == null || components.size() == 0)
16 throw new MobilityAttributeException(
17 ”MajorityRules: invalid component set”
18 );
19 this.components = components;
20 countByHost = new HashMap<String,Integer>();
21 rms = (ResourceManagerServer)
22 MageServer.getComponent(”ResourceManager”);
23 }
24
25 @Override
26 public Set<String> targets(Method m) throws TargetException {
27 Set<String> ret = new HashSet<String>();
28 Integer value;
29 String h;
30 int max = 1, n;
31
32 countByHost.clear();
33 for (String c : components) {
34 try {
35 h = MageRegistryServer.find(c);
36 } catch (Exception e) {
37 throw new TargetException(”MajorityRules: find failure”, e);
38 }
39 value = countByHost.get(c);
40 if (value == null)
41 countByHost.put(h, 1);
42 else {
43 n = value.intValue() + 1;
44 countByHost.put(h, n);
45 if (n == max)
46 ret.add(h);
47 if (n > max) {
48 max = n;
49 ret.clear();
50 ret.add(h);
51 }
52 }
53 }
54 return ret;
55 }
56 }
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MAGE cannot prevent migration trashing in general, but it does allow a programmer to

write concise policies that can prevent specific instances of it. For instance, if the programmer

had noticed the cycle in the call graph that links a, b and c, he could have have bound the

MajorityRules instead of COD to their proxies to each other.

An instance of MajorityRules, Listing 4.7, tracks the location of the set of components

passed to its constructor. Its targets method finds each component, then returns that

subset of hosts with the highest count: thus, its target is a host on which a majority of those

components resides. Thus, its application causes a component bound to it to move the host

on which that majority resides.

If the programmer had bound MajorityRules to the proxies a, b and c use to commu-

nicate with each other instead of COD, migration trashing would not have occurred. When a

invokes b.f in Figure 4.10a, b would remain on host y, since a majority of the set {a, b, c}

already resides on y. Then c’s invocation of a.f would cause a to join b and c on y, where

all three mobile objects would remain for the duration of their intercommunication.

An instance of MajorityRules constructed with a singleton set realizes an attribute

whose policy causes components to which it is bound to collocate with the component in its

singleton set. When an instance of MajorityRules both tracks and is bound to the same

component, its behavior is that of an expensive local procedure call.

4.3.3 The MAGE Resource Manager, or Resource Awareness

MAGE’s raison d’être is to allow programmers to dynamically decide where computation in

their program should occur and thus how they should combine message passing and code

migration to accomplish a task. To this end, MAGE must be resource aware [85] and provide

programmers a source of system state that they can query when defining a mobile object

migration policy via a mobility attribute.

A great deal of work has gone into load information management systems [71]. MAGE

stands on the shoulders of giants and leverages this work: MAGE provides its mobility

attributes a generic interface to such systems via its resource manager service. The MAGE

resource manager maps strings to arbitrary objects that contain resource data. This service
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is globally accessible within the address space of a MAGE host. Since each MAGE host has

its own resource manager, the service is inherently decentralized.

Because performance statistics are application-specific and expensive to gather, MAGE

leaves the population of the resource manager to the application. To use the MAGE resource

manager, a programmer must first populate the service with information about a resource of

interest. For example, the programmer could write code that polls Java’s JMX API [68] to

learn a system’s CPU load, then stores it in the local resource manager. MAGE does not

synchronize the data stored in resource managers on different hosts. To get information from

remote resource managers, the programmer must write code to query the remote resource

managers and add the results to the local resource manager. Since it is the programmer’s

responsibility to populate the MAGE resource manager, the freshness of the data is entirely

delegated to the programmer. Section 6.3.7 in Chapter 6 discusses the realization of this

service via MAGE’s ResouceManagerServer.

Threshold and its subclasses make use of the MAGE resource manager through their

rm handle. Threshold’s constructor takes a key and a bound, or threshold. CPULoad

is that subclass of Threshold that binds key to “CPU;” while ComponentCount binds

Threshold’s key to “count.” Invokers that employ ComponentCount cause the target

component to be crowd-adverse, to seek hosts with fewer than b other components.

Listing 4.7 in Chapter 4 rather expensively finds its component set upon each invocation.

Listing 4.8 depicts componentCount, a method an application could use to update the

MAGE resource manager with component counts by host. Implicitly, if the map contains no

mapping for a host, that host’s count is zero. The name parameter allows an application to

define differents sets of components for use in different instances of MajorityRules. An

application would need to run componentCount periodically for each set of components on

each host. The targets method of MajorityRules would then query the local resource

manager, rather then finding the components.

Listing 4.9 defines CPULoad, a mobility attribute that relies on the MAGE resource

manager. This attribute’s targets(Method m) accesses the MAGE resource manager

through rms, a field initialized in its constructor. This attribute defines the policy of
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Listing 4.8: Populating the MAGE Resource Manager with Resident Component Counts

1 protected void
2 componentCount(String name, Set<String> components) {
3 Map<String,Integer> countByHost =
4 new HashMap<String,Integer>();
5 String h;
6 Integer t;
7 for (String c : components) {
8 h = MageRegistryServer.find(c);
9 t = countByHost.get(h);

10 if (t == null)
11 countByHost.put(h, 1);
12 else
13 countByHost.put(h, t+1);
14 }
15 //overwrite previous binding
16 ResourceManagerServer.put(name, countByHost);
17 }

executing on lightly loaded systems. Here, we assume that the application periodically

updates the map to which “cpuload” is bound. This map binds host names to the output of

the UNIX uptime command, which reports the length of the run queue for the past 1, 5,

and 15 minutes. In Listing 4.9, the targets method queries the MAGE resource service to

discover the CPU load of each host. The index field selects which of the three load averages

to use in the comparison. CPULoad then builds a set that contains those hosts whose selected

load average does not exceed the programmer-specified threshold threshold, passed into

the attribute upon construction.

4.4 Operations

MAGE provides four families of operators over its primitives — find, composition operators,

bind, and invocation.
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Listing 4.9: CPULoad
1 package ml;
2
3 import java.lang.reflect.Method;. . .
4
5 public class CPULoad extends MobilityAttributeA {
6
7 private static final long serialVersionUID = 1L;
8 protected ResourceManagerServer rms;
9 protected int index;

10 protected float threshold;
11
12 public CPULoad(int index, float threshold)
13 throws MobilityAttributeException
14 {
15 assert index < 3;
16 this.index = index;
17 this.threshold = threshold;
18 rms = (ResourceManagerServer)
19 MageServer.getComponent(”ResourceManager”);
20 }
21
22 @Override
23 public Set<String> targets(Method m) throws TargetException {
24 Set<String> ret = new HashSet<String>();
25 Float[] loads;
26 HashMap<String,Float[]> cpuload =
27 (HashMap<String, Float[]>) rms.get(”cpuload”);
28 for( String h : cpuload.keySet()) {
29 loads = cpuload.get(h);
30 if ( loads[index] <= threshold ) {
31 ret.add(h);
32 }
33 }
34 return ret;
35 }
36 }

Listing 4.10: The MAGE find Operators

public static String find(String name);
public static MageMobile lookup(String name);

4.4.1 Find Operators

MageRegistryServer defines these methods. The name parameter must have the RMI

URL format rmi://[host][:port][/[object]], in both find methods in Listing 4.10.

In this format, object is the mobile object’s name and host:port is that object’s origin
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server, the server on which the mobile object was first bound to a registry using the first

form of the bind method defined in Listing 4.18. Each mobile object’s name must be unique

throughout a system running MAGE. It is the programmer’s responsibility to meet this

constraint.

The find method returns the current location of the named mobile object as a string

in IP-Address:port format. It is primarily used by the MAGE framework itself, during

invocation. The lookup method returns a proxy to the named mobile object. Each distinct

invoker of a mobile object must call this method before it can invoke operations on that

mobile object.

A programmer must statically know a mobile object’s origin server host, in order to

download a proxy from the registry at the well-known port 1099. Embedded in the proxy is

the invocation server port of that mobile object’s origin server.

4.4.2 Mobility Attribute Operators

Mobility attributes are Java classes, so their methods are Turing-complete. Further, mobility

attributes can be composed using the standard Object-Oriented techniques of aggregation

and inheritance. These allow us to compose attributes in arbitrary ways, but are usually

more powerful than is necessary. We may just want to complement an attribute’s target.

We may want to select a target from the union or the intersection of the two target sets

returned by application of two distinct attributes. Listing 4.11 illustrates the boilerplate the

programmer would have to write to intersect the start sets while returning the union of the

target sets of two mobility attributes.

Mobility attribute operators obviate such boilerplate. Mobility attributes define sets —

S, the set of valid locations at which a bound object can receive an invocation and T, the

target set of hosts at which we want a bound object to execute. Since mobility attributes

are essentially sets, we can apply standard set theoretic operators to them. Conceptually,

mobility attribute operators leverage this fact to realize a domain-specific language for

elegantly combining attributes. Listing 4.12 contains MAGE’s Operator class which

defines the supported operations.
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Listing 4.11: Manual Attribute Composition

1 package ml;
2
3 import java.lang.reflect.Method;
4 import java.util.Set;
5
6 public class DirectUnion extends MobilityAttributeA {
7
8 private static final long serialVersionUID = 1L;
9 protected MobilityAttribute o1;

10 protected MobilityAttribute o2;
11
12 public DirectUnion(MobilityAttribute o1, MobilityAttribute o2)
13 {
14 assert o1 != null && o2 != null;
15 this.o1 = o1;
16 this.o2 = o2;
17 }
18
19 @Override
20 public Set<String> starts(Method m) throws StartException {
21 Set<String> ret = o1.starts(m);
22 ret.retainAll(o2.starts(m)); // intersection
23 return ret;
24 }
25
26 @Override
27 public Set<String> targets(Method m) throws TargetException {
28 Set<String> ret = o1.targets(m);
29 ret.addAll(o2.targets(m));
30 return ret;
31 }
32
33 }

Because a mobility attribute is a pair of sets, we must apply two operators, one for

each set, when composing two mobility attributes. The LEFT and RIGHT operators just

return either their left or right operand. These two operators are useful when you want to

compose one of S or T, while ignoring the other. For example, for the two mobility attributes

a = (S, T ) and b = (S′, T ′), (a.S LEFT b.S′, a.T RIGHT b.T ′) = (S, T ′), while (a.S RIGHT

b.S′, a.T RIGHT b.T ′ = (S′, T ′) = b. For more detail, refer to Section 3.5 which defines these
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Listing 4.12: Operator Class

package ml;

public enum Operator {
COMPLEMENT, UNION, INTERSECTION, LEFT, RIGHT;

}

operators and their semantics.

Listing 4.13: Mobility Attribute Operations

public MobilityAttribute complementS();
public MobilityAttribute complementT();
public MobilityAttribute complementST();
public MobilityAttribute combine(

MobilityAttribute r, Operator opS, Operator opT
);

Listing 4.13 shows the mobility attribute operations that MobilityAttribute defines.

Rather than create a method for each of the possible combinations of operators applied

to each of S and T , MAGE provides the combine method, shown in Listing 4.14. The

programmer calls this method on the left operand, passes in the right operator, and the

appropriate operators in opS and opT. The combine method returns a mobility attribute

instance whose starts method combines the starts methods of its operands using the

opS and the targets methods using opT. For the mobility attributes m0,m1, the union of

their S sets combined with the intersection of their T sets, denoted m0 ∪S ∩T m1, becomes

m0.combine(m1,Operator.UNION,Operator.INTERSECTION). The complement*

methods are syntactic sugar for calls to combine.

Listing 4.14: Generic Operator Application

1 public MobilityAttribute combine(MobilityAttribute r,
2 Operator opS, Operator opT)
3 {
4 return new MobilityAttribute(this, r, opS, opT);
5 }
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Listing 4.15: Manual Example Redux

1 MobilityAttribute o1 = new MobilityAttribute();
2 MobilityAttribute o2 = new MobilityAttribute();
3 MobilityAttribute redux =
4 o1.combine(o2, Operator.INTERSECTION, Operator.UNION);

Listing 4.16: Intersecting CPULoad and Bandwidth

1 CPULoad ll = new CPULoad(2, 0.5); // See Section 4.3.3.
2 Bandwidth bandwidth = new Bandwith("1MB");
3 MobilityAttribute llBandwidth = ll.combine(
4 bandwidth, Operator.UNION, Operator.INTERSECTION
5 );
6 FarmerImpl fi = new FarmerImpl();
7 Farmer farmer = (Farmer)
8 MageRegistryServer.bind("ebayfarmer", fi);
9 farmer.bind(llBandwidth);

10 try {
11 farmer.ploughEbay();
12 }
13 catch (TargetException e) {
14 // Oops, no host has sufficient CPU and network bandwidth.
15 }

Listing 4.15 uses mobility attribute operators to re-implements the composition of

attributes defined earlier in Listing 4.11. The combine method returns redux, a new

mobility attribute whose starts method returns the intersection of the results of the

starts methods of o1 and o2 and whose targets method returns the union of the results

of the targets methods of o1 and o2.

Listing 4.16 illustrates how a programmer might use mobility attribute operators to

combine mobility attributes. FarmerImpl is a class that gathers and parses the results of

Ebay auctions, before storing them in a database. The Bandwidth attribute, instantiated

on line 2, is a subclass of Threshold specialized to return as targets all systems that are con-

suming less bandwidth than the threshold passed into its constructor. We defined CPULoad

in Section 4.3.3 to return systems whose CPU load falls below some user-defined threshold

and discussed the implementation of its targets(Method m) method in Listing 4.9. The
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programmer wants farmer to run on lightly loaded systems that also have at least 1MB of

available network bandwidth. On lines 3–4, the programmer intersects the target sets of the

CPULoad and Bandwidth attributes to capture this policy in llBandwidth, then applies

the policy by binding the attribute to farmer.

REVa(x) MajorityRulesCPULoad

!S!T ∪S∪T

∩S∩T

Figure 4.11: Mobility Attribute Operator Tree

StaticPartition becomes

interesting in conjunction with mo-

bility attribute operators: Com-

bining an instance of StaticPartition

with a CPULoad instance using the

target intersection operator creates

an attribute that selects the least

loaded host within the specified

partition.

Listing 4.17 shows an extended

usage example that builds the op-

erator tree shown in Figure 4.11. In the example, we know that a particular system is going

down for maintenance. To build a mobility attribute whose target avoids that system, we

complement the target of an instance of REVa. In general, we want the c0 component

to either run on relatively unloaded systems (1 minute load average less than 2.0) or, to

minimize network traffic, on systems where a majority of the components c0-3 are executing.

We realize this policy in the attribute lowCPUOrMR. Finally, we intersect lowCPUOrMR

with availableHOsts to ensure that c0 does not run on “hostGoingDown.”

4.4.3 Bind Operators

Listing 4.18 contains the three types of binding operators in MAGE.

MAGE borrows the first form of its binding operator from RMI. Defined in the class

MageRegistryServer, this form binds the mobile object o to the identifier name, thereby

publishing o so that it can receive remote invocations. After o has bound itself to name,

clients typically contact the MAGE registry and use name to acquire a proxy to o. This
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Listing 4.17: Operator Tree Example

1 REVa adminDown = new REVa("hostGoingDown");
2 CPULoad cpu = new CPULoad("2.0");
3 Set<String> components = new HashSet<String>();
4 components.add("c0"); components.add("c1");
5 components.add("c2"); components.add("c3");
6 MajorityRules mr = new MajorityRules(components);
7 MobilityAttribute availableHosts = adminDown.complementT();
8 MobilityAttribute lowCPUOrMR =
9 components.combine(mr,Operator.UNION,Operator.UNION);

10 MobilityAttribute availLowCPUOrMR = availableHosts.combine(
11 lowCPUOrMR,Operator.INTERSECTION,Operator.INTERSECTION);
12 UIface proxy = MageRegistryServer.lookup("c0");
13 proxy.bind(availLowCPUOrMR);
14 proxy.foo(bar);

Listing 4.18: The MAGE Binding Operators

public Remote bind(String name, MageMobileObject o);
public void bind(MobilityAttribute ma);
public void bind(MobilityAttribute ma, Operator opT);

operator returns a proxy because even in a server context no object should have a direct

reference to a mobile object, to avoid inadvertently cloning the mobile object and its

attendant data coherency problems.

Defined by the MageMobile interface, the second form binds mobility attributes to a

proxy, so that the attribute can intercept calls mediated by that proxy, as described above

in Section 4.1.3.

Defined by MageMobileObject, the third form of the bind operator ties a mobility

attribute directly to a mobile object, not to a proxy to that mobile object. While a mobility

attribute bound to a proxy intercepts a call in the invoker’s context, a mobility attribute

directly bound to a mobile object intercepts a call in that mobile object’s context, at the

server on which the mobile object is residing when it receives the call.

In this context, the start set S, and the starts method that defines it, make no sense.

First, only invocations that meet the invoker’s starting location constraint are delivered.
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Second, the mobile object’s current host must always be in the start set of the attribute

directly bound to it, because, if not, every attempt to invoke the mobile object would throw

StartException and the mobile object would never move or execute. Contrast this with a

proxy-mediated invocation, where the invoker can bind a different, more permissive, attribute

whose S includes the object’s actual location in reaction to receiving a StartException.

Since a mobile object’s current location must always be in the start set of an attribute bound

directly to that mobile object, the start set S of directly bound attributes is superfluous and

ignored.

The set of targets to which to move the mobile object directly bound to an attribute,

is another matter. In MAGE, each time a mobile object is invoked, two targets sets are

potentially generated — Ti from the invoker’s attribute bound to its proxy and Td from

the attribute directly bound to the invoked mobile object. Rather than simply ignore

the invoker’s target set Ti, MAGE reuses its attribute composition operators to allow the

programmer to decide whether and how to combine Td and Ti. Allowing the programmer

this flexibility is a strict superset of ignoring Ti, as the programmer directly binding an

attribute to a mobile object can always select Operator.LEFT, thereby causing MAGE to

ignore Ti.

With this groundwork laid, we can now unpack and explain this final bind operator’s

signature. Called on an instance of a mobile object, this bind operator takes a mobility

attribute and an mobility attribute composition operator. After the binding, MAGE

intercepts invocations on the mobile object in the context of server on which the mobile

object is currently residing, generates the target set of the bound mobility attribute Td,

extracts the client’s target set Ti from the incoming invocation, then uses the bound operator

to combine the two target sets. If the mobile object’s current host is in Td Op Ti, the mobile

object executes, otherwise it moves to some t ∈ Td Op Ti. The semantics of this operator

and component mobility attributes, i.e. attributes directly bound to a mobile object, are

discussed in more detail in Section 3.6.

Listing 4.19 illustrates the utility of binding mobility attributes directly to mobile objects.

Partition is an attribute that partitions H, the set of hosts, into “good” and “bad” subsets,
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Figure 4.12: Partition Example

Listing 4.19: Binding Component Mobility Attributes

1 Partition p = new Partition(goodHosts);
2 MageMobileObject o = new MageMobileObject();
3 o.bind(p, Operator.INTERSECTION);
4 MageRegistryServer.bind("server", o);

as shown in Figure 4.12. For instance, a programmer can instantiate a Partition attribute

that maps hosts that are going down for maintenance to the “bad” set and those that will

not to Td, the “good” set. On line 1, Partition’s constructor takes the good subset and

instantiates p. Let Ti be the target set of the invoker’s mobility attribute, embedded in the

invocation. On line 3, we bind p directly to the mobile object o whose execution we wish

to restrict to hosts in the “good” partition, using the intersection operation. Subsequently,

no matter what Ti is, MAGE restricts o’s executions to the intersection of Td and Ti, that

subset of Ti that falls within “good” partition of hosts. In Figure 4.12, move0 is to a host not

in the intersection, while move1 is. If the intersection is empty, MAGE informs the invoker

with a TargetException. Finally, we publish o so that it can be invoked on line 4.
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4.4.4 Invocation

MAGE proxies are always bound to a mobility attribute. An unbound attribute is implicitly

bound to an instance of CLE, which instructs MAGE to execute the target mobile object in

place, wherever it is. Thus, an invocation on a MAGE proxy first applies the bound attribute

to discover its S and T sets. MAGE then finds the component to determine whether its

current location is in S. If not, MAGE throws StartException to the invoker. Otherwise,

MAGE builds and sends the invocation, along with T , to the target component’s current

location.

The receiving host first checks whether a mobility attribute is directly bound to the

target mobile object. If a mobility attribute is directly bound to the target mobile object,

the receiving host applies that attribute to produce T ′, then generates Ts = T ′ Op T , where

T is the client’s target set and Op is the operator used in the call to the third form of the

bind method above. If no mobility attribute is directly bound to the mobile object, Ts = T .

If the receiving host is itself in Ts, it simply executes the target component. Otherwise, it

adds the target component to the invocation which it forwards to some t ∈ Ts. Conceptually,

MAGE invocations implicitly precede invocations with moves.

4.5 Summary

In this chapter, we have explored the MAGE programming model. We have discussed its

primitives — mobile objects, proxies, and mobility attributes — and its families of operations

over those primitives — find, mobility attribute operators, bind, and invocation.
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Chapter 5

Location Services

Attempt the end, and never stand to doubt;

Nothing’s so hard but search will find it out.

Robert Herrick, 1591-1674

A distributed system that supports mobile components, such as MAGE, must send

messages, in particular invocations, to mobile components as they move. A location

service finds resources, such as a mobile component. Dynamic location services include

broadcasts, directories, and forwarding pointers. These approaches differ in their lookup

and maintenance costs, and their degree of fault tolerance. Forwarding pointers [30] trade

lookup for maintenance cost. In this chapter, we show that, for mobile resources, forwarding

pointers require fewer messages on average than a centralized directory. Thus, to minimize

the number of messages (Section 5.2) and to avoid a bottleneck and a single point of failure,

MAGE uses forwarding pointers.

In short, this chapter first juxtaposes forwarding pointers and a centralized directory,

then presents and contrasts invocation protocols built using forwarding pointers; it describes

the design of MAGE’s find operation and its invocation protocol.
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5.1 Background

Throughout this chapter, we assume that a network is a fully connected graph.

Definition 5.1.1. A directory maps entities, some of which either are or may become

remote, to locations.

Remark. An execution environment (host) necessarily knows about local entities. The

constraint that some entities must be actually or potentially remote distinguishes a directory

from an execution environment.

A directory of mobile components maps the components to hosts. If a network of n nodes

uses directories, it can have 1 to n directories. When there are n directories, every system

within the network is a directory. A common directory service employs a single, centralized

directory (D). Under D, whenever a mobile component moves, it updates its binding at

the designated directory. Alternately, we can partition the network or the resources and

employ one directory per partition. Each partition, however, reduces to a single, centralized

directory in a smaller network. For this reason, we restrict our attention to D.

Under the forwarding pointer location service (FP), every host in the distributed system

is a directory, albeit one whose binding for a mobile component may be stale or that may not

even have a binding for a given mobile component. Each mobile component starts at some

host, which we call its origin. Whenever it moves, it updates its binding in the directory of

the host it is leaving to point to the host to which it is moving. This entry is a forwarding

pointer since it does not necessarily indicate where the mobile component is, but rather that

component’s last location known to a host.

To statically bootstrap D, the application must statically know the name of the directory.

To statically bootstrap FP, the application must statically know the origin of each mobile

component, although this burden can be reduced by starting all mobile components at the

same host. If there is a single, shared origin, then FP starts out as D. By default, Java uses

the former method to statically bootstrap RMI: For each remote object capable of receiving

and executing incoming, remote calls, the programmer must statically specify the server on
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Figure 5.1: Forwarding Pointers

which that remote object resides in order to download a proxy to the remote object. The

proxy stores its remote object’s server.

To dynamically bootstrap D, one must resort to broadcast — either the directory must

broadcast its identity to all hosts or each host must broadcast to discover the directory. FP,

in contrast, needs only broadcast until it finds any host that has a forwarding pointer for a

particular mobile component.

Figure 5.1 illustrates how a lookup proceeds under FP. Let C be the set of components;

let H be the set of hosts and h0, h1, h2, h3 ∈ H. Assume that c’s origin is statically known.

For i, c ∈ C, i is searching for c. The invoker i first contacts h0, c’s origin server which refers

i to h1, which was c’s destination when c left h0. Then i contacts h1 which refers i to h3

where c resides at the time of the lookup.

D is centralized, while FP is decentralized. Even when FP bootstraps from a single

origin server for all mobile components, as components move and lookups occur over time, a

system using FP reduces its dependency on that origin server. As a result, D has a single

point of failure while, after sufficient movement by mobile objects, FP does not1. FP, on

the other hand, is more fault-sensitive in that the failure of any host on the path from an
1Quantifying “sufficient movement,” either by using the Poisson model we describe in Section 5.2 or an

application-specific model, is future work.
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invoker to an object would prevent that invoker from reaching the object. For clarity, the

analysis that follows assumes that machines do not fail.

Of course, we could augment D to use replication or elect a new directory or even fall

back to lookup via broadcast. We could use multiple directories, each responsible for a

partition of hosts and thereby reduce the number of hosts affected by a directory failure.

Replication increases and complicates the cost of updating the information stored in the

directory service. Partitioning the network among a set of directories recreates the problem

of a single centralized directory within the partition. Thus, D embodies core functionality

that these variants either layer upon or reduce to. Therefore, we take D as our point of

departure and defer these variants and their analogs for FP to future work.

Initially, D appears superior to FP. For a system with n = |H| hosts, D requires Θ(|C|)

space in the worst case. Under FP, all nodes are directories, so FP requires O(n|C|) space

in the worst case. In the worst case, D requires a single lookup message. In FP, the

number of lookup messages is the length of a chain of forwarding pointers, or the staleness

of the information in the first pointer, and depends on the itinerary of the tracked mobile

component. Thus, FP’s worst case number of lookup messages is n− 1.

Figure 5.2 captures these differences for three location services — broadcast (B), D, and

FP. The X-axis is the worst case number of directories in a network. The Y-axis is the worst

case number of lookup messages to locate a resource. Again, while that resource is mobile,

we assume that it does not move during lookup. We include B as an additional point of

reference.

Another way to view the Y-axis is as a measure of the worst case staleness of a particular

directory’s information. Zero on the Y-axis means no messages were sent to the directory

service to find the target resource. This occurs when the searcher and target are collocated

or when the searcher’s cache is fresh.

B does not require a directory. Thus, B appears on the Y-axis. A broadcast method

that sends a single message to each node in a network requires the broadcaster to know

every destination. Broadcasting via flooding, in which every node that does not have the

queried resource resends the query on every link on which it has not already received a query,



5.2. Directory vs. Forwarding Pointers: Message Cost 82

O(n2)

...

n− 1

...

2

1

0
n...21

worst case
lookup

messages

directories

B

D

FP

♦

♦

♦

Figure 5.2: Worst Case Location Service Comparison

does not have this requirement [97]. In the worst case, broadcasting via flooding requires

messages on the order of the number of edges in the network, as shown.

5.2 Directory vs. Forwarding Pointers: Message Cost

Thus far, it would appear that FP is a non-starter. Consider, however, the message cost of

keeping the information in the two location services current. Let m denote the number of

moves that the mobile resource made before the lookup under consideration. D requires m

update messages, while FP requires 0, because FP builds the cost of update into lookup.

Moreover, if the mobile resource returns to a host it already visited, the chain of forwarding

pointer is split into two, shorter chains, while the work to update D is unchanged.

To analyze the two location services in terms of their total message costs, we employ

the machinery of probability to model the movement of the target resource, so that we can

discover the expected length of the FP chain in terms of the number of expected moves of

the target resource. In so doing, we dispense with the assumption above that the target

resource does not move during lookup.

We compare messages counts because it is independent of timing considerations such as

link and host latency. More to the point, we can derive the time cost from messages.

When comparing the message cost of D against that of FP, there are two sources of
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randomness — the movement of a target mobile component and the occurrence of searches

or invocations, since, in MAGE, searchers are invokers. We use the Poisson distribution in

Definition 5.2.1 to model these events [76, p57]. This distribution is continuous and requires

that the modeled events be independent. Since Z ⊂ R, the use of a continuous distribution

is more parsimonious: it does not impose the assumption that sample space be discrete.

Our events are the movements of mobile resources and searches for them. A computer

program creates, moves, and searches for these mobile objects, so movement and searches

are unlikely to be independent in general. In the absence of assuming a particular program

and instead thinking in terms of any such program, the assumption of independence for

these two variables is, however, a reasonable first approximation of their behavior. Even in

the presence of a particular program, this model can serve to measure the degree to which

that program’s behavior is dependent by comparing the results of this model against the

program’s observed behavior.

Definition 5.2.1 (Poisson). The probability that k events occur in time t is

Pr(k) =
e−λt(λt)k

k!
(5.1)

Remark. λ is the expected number of occurrences during t.

When k is the number of moves the mobile component c makes, Equation 5.2 gives the

probability that no moves occur in time interval t.

Pr(k = 0) =
e−λt(λt)0

0!
= e−λt (5.2)

Recall that C is the set of components. Without loss of generality, let a searcher be

an invoker and I ⊆ C be the set of invokers. Let M be the number of moves the mobile

component c ∈ C makes. Let V be the number of invocations made by i ∈ I. We restrict

ourselves to a stream of invocations issued by a single invoker, so our model can incorporate
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Figure 5.3: Directory Service Races

cache effects. Both M and V are Poisson random variables. Then λm is the rate at which a

mobile component moves and λi is the rate at which an invoker begins its search protocol.

We consider M and V over the same period te, the period of the experiment.

The mobile component c ∈ C moves when it changes host. This definition does not

encompass null moves.

Let r be the rate at which an invoker sends messages and tr denote a network’s round trip

time (RTT). The variable tr is a parameter of the model. By fixing tr, we ignore variance in

RTT, such as congestion or link failure, in order to keep the model simple. If r > 1
tr

, the

invoker issues some messages before it knows the results of previous messages. Further, if

λm ≥ r, then mobile components are moving at least as fast as invokers are sending messages,

and invocations may never complete. Thus, we assume λm < r ≤ 1
tr

.

Both D and FP are subject to data races, since a mobile component may move at any

time. Figure 5.3a contains two races, one between r0 and r2 and the other between r1 and

r3. Both races start when D receives “find c.” If r0 occurs before r2, then i receives incorrect

information. Since r2 depends on r1, it depends on the sending and receiving of two messages

— c itself from h0 to h1 and then the update from h1 to D. Together, these messages take

time greater than or equal to tr to propagate. If r3 loses its race with r1, i’s invocation fails.
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Event r3 depends on r0, so its race too occurs in a period of time of duration at least tr.

In FP, there is no directory to update, so the two races in Figure 5.3b both involve r1

directly. If r1 occurs before ”find c” arrives at h0, then c moves before the invoker is told

that c is on h0, and i just follows another link in the chain of forwarding pointers. To i, this

case is indistinguishable from a longer chain. If r1 occurs after r0 but before r3, then c has

the time until the find reply reaches and i and i’s invocation arrives at r3 to move, or RTT.

Therefore, the period of time during which these races can occur has duration greater

than tr. From Equation 5.2, the probability that a message wins the race with a mobile

component is e−λmtr , for tr = RTT, because this is the probability of 0 moves after a

successful find reply is sent and the message arrives. For simplicity and because our concern

is to compare D and FP, we do not model the time between events occurring on a single

system and assume that it is simply zero.

The analysis that follows does not include either the cost of movement, nor the cost of

sending an invocation. For concision, we ignore replies to lookup messages, and assume

lossless communication.

5.2.1 D’s Message Cost

Whenever a mobile component moves, it must update the directory. Thus, D’s message cost

per move is 1. A lookup may fail due to racing with a move. Equation 5.3 calculates the

expected number of find messages, 〈D〉, that must be issued given that races are possible2.

Its first line captures the expected cost of a mobile component moving in each race window

infinitely often as an infinite series. At the start of each race window, we send a message,

the 1 in both terms. If the mobile component does not move during the race window, we

have found the mobile object. If it does move, we begin a new race window.

In Equation 5.3, a scripted uppercase letter followed by a colon, such as A :, is a

mechanism for implicitly introducing a variable into an equation. Here, we use A to make

algebraically manipulating an infinite series more tractable.
2Angle brackets denote the expected value of a random variable.
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〈Dr〉 = A : P (0 moves in race window)1 + P (j > 0 moves in race window)1[

P (0 moves in race window)1 + P (j > 0 moves in race window)1[· · · ]]

A = e−λmtr + (1− e−λmtr)A

A− (1− e−λmtr)A = e−λmtr

A(1− (1− e−λmtr)) = e−λmtr (5.3)

Ae−λmtr = e−λmtr

A = 1

〈Dr〉 = 1

Assuming that c’s location is uniformly distributed across H, 1
n is the chance that i and

c are collocated and n−1
n is the chance that c is remote to i. D’s lookup cost is zero when i

and c are collocated. This is the 1
n0 term in Equation 5.4.

〈Dl〉 = 〈Dr〉(
1
n

0 +
n− 1
n

) =
n− 1
n

(5.4)

Caching a resource’s last known location is a simple and common optimization. Equa-

tion 5.5 defines the expected lookup cost under D in the presence of caching. If the cache

is up-to-date, no find message is sent, but, if not, the invocation that was sent becomes

a find, which costs 1 message, and then a normal lookup occurs, whose cost is given by

Equation 5.4. Together, these terms compose the factor 1 + n−1
n . Notice that ti, the time

interval parameter, is not tr; it is the interval between invocations originating at a particular

host.
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〈Dc〉 = P (0 moves since last invocation)0

+ P (at least one move since last invocation)(1 +
n− 1
n

)

= e−λmti0 + (1− e−λmti)(1 +
n− 1
n

)

= (1− e−λmti)(1 +
n− 1
n

) (5.5)

Thus, D’s expected total message cost for a single invoker is

〈M〉+ 〈V 〉(1− e−λmti)(1 +
n− 1
n

) (5.6)

5.2.2 FP’s Message Cost

When a mobile component moves under FP, it leaves behind a forwarding pointer, which

costs no message. However, when an invoker seeks to invoke an operation on that mobile

component, it must traverse the chain of forwarding pointers built by that mobile component’s

itinerary. At the time of the jth invocation, let fj be such a chain of forwarding pointers

from an invoker i to a component c. FP directly handles collocation because |fj | is free to

be zero.

FP updates the invoker’s forwarding pointer to point to where a mobile component

was found after each invocation, as shown in Figure 5.4. Thus, an FP invocation does not

start from the target mobile component’s origin on each invocation. This point is crucial to

understanding the upper bound: each invocation traverses part of the path formed by c’s

〈M〉 moves. This is because the path starts from the invoker i, not a directory.

〈M〉
2
≤
〈V 〉∑
j=0

|fj | ≤ 〈M〉 (5.7)

Equation 5.7 bounds FP. The lower bound occurs when c collocates with i every other

move. Note that the lower bound cannot be zero, given our definition of a move as a change

of host. The component c can revisit a host during its expected budget of 〈M〉 moves, thus
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Figure 5.4: Invoker Update Under Forwarding Pointers

splitting its chain of forwarding pointers. When it does so, it shortens the chain for invokers

both ahead and behind the revisited node. The longest path c can form is n − 1. The

component c can repeatedly form a longest path by moving n− 1 times between invocations.

When n < 〈M〉, c necessarily revisits a host.

5.2.3 Collapsing FP Chains

Recall that I is the set of invokers. When |I| > 1, D’s expected total message cost becomes

〈M〉+|I|〈V 〉, while FP’s total becomes |I|
∑〈v〉

j=0 |fj |. Collapsing FP chains is an optimization

that improves the performance of FP when there are many invokers. Because it reduces the

expected length of a chain of forwarding pointers, it also reduces the fault sensitivity of FP.

FPc is forwarding pointers with path compression. Under FPc, an invoker that traverses a

chain of forwarding pointers, revisits the hosts along the chain to update their pointers to

point to the target mobile component’s current host, after it has found the target mobile

component. It does not revisit the penultimate hop in the chain or the target component’s

current host as these hosts have current information. By collapsing the path, an invoker

reduces the traversal and update work of subsequent invokers.
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Figure 5.5: Collapse Forwarding Pointer Chain

D 〈M〉+ 〈V 〉(1− e−λmt)(1 + n−1
n )

FP
∑〈V 〉

j=0 |fj |
FPc

∑〈V 〉
j=0 u(j)

Table 5.1: Directory Service Total Messages

In Figure 5.5, i not only updates its local pointer for c on h2 to point to h3 after it has

found c, but asynchronously collapses the chain of forwarding pointers to c by updating c’s

entry on h0 to point to h3.

The function u : N→ N defined in Equation 5.8 represents the cost of both traversing

and collapsing the chain of forwarding pointers |fj | at the time of invocation j.

u(j) =

 |fj | if |fj | ≤ 2

2|fj | − 2 otherwise
(5.8)

5.2.4 Single Invoker Cost Comparison

Table 5.1 summarizes the expected messages required to both find a component and update

the directory service.
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〈M〉+ 〈V 〉(1− e−λmti)(1 +
n− 1
n

) =
〈V 〉∑
j=0

|fj | ≤ 〈M〉

〈V 〉(1− e−λmti)(1 +
n− 1
n

) ≤ 〈M〉 − 〈M〉

〈V 〉(1− e−λmti)(1 +
n− 1
n

) ≤ 0 (5.9)

To compare D and FP for a single invoker, we set their total costs equal and solve.

Equation 5.9 implies FP sends fewer messages than D on average, since FP’s cost is

independent of 〈V 〉, the expected number of invocations, even assuming the worst case

movement of the target mobile object, where the adversary makes the invoker perform a

traversal for each move. Intuitively, D does a lot of needless work to keep its directory

up-to-date: When a mobile object moves three times between invocations, only the last

directory update is needed.

Multiple invokers will only strengthen this result for FP, as an arbitrary invoker is likely

to benefit from the shortcut performed by another invoker along its path to the object. FPc

only makes sense in the context of multiple invokers. Future work will extend this analysis

to multiple invokers.

5.3 Correctness of FP

Here, we assume that moves are instantaneous. In practice, we approximate this assumption

by tolerating inconsistency in the tree forwarding pointers for a bounded period of time, see

Section 6.5.4. Our proofs use induction on states, so there can be no simultaneous transitions.

In particular, we assume a total ordering over message arrival within the network. We also

assume that r is not moving faster than the finds that are chasing it. In practice, we enforce

this assumption with a bound on the length of the path to a resource that a finder follows

before it abandons the search.

Let R denote a set of mobile resources. The origin of r ∈ R is the host at which r enters

the network. Let F be the set of finders. F 6= ∅. Let HF ⊆ H be the set of hosts on which
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finders reside. Let fp : H → H return a host’s forwarding pointer to the resource r.

Initially, Equations 5.11 and 5.12 hold. The nil in Equation 5.12 means that the host

does not know how to find r.

fp(h) = origin (5.10)

∀h ∈ HF , fp(h) = origin (5.11)

∀h ∈ H −HF , fp(h) = nil (5.12)

Recall Function Overriding, Definition 3.3.2:

σ[x := n](x) = n

σ[x := n](y) = σ(y)

Below we use the prime operator from Lamport’s Temporal Logic of Actions [57].

FP Rules

1. Success: A search ends when it reaches hr, r’s current host.

2. Move: For hs, hd ∈ H, when r moves from hs to hd, fp′ = fp(hs := hd, hd := hd).

3. Local Update: When a searcher on l ∈ H finds r at h ∈ H, fp′ = fp(l := h), i.e.

the searcher updates its local forwarding pointer to hr, the host at which it found r.

Let Hk = {h ∈ H | fp(h) 6= nil} and E = {(x, y) ∈ H × H | (fp(x) = y) ∧ (x 6=

y) ∧ (fp(x) 6= nil)}.

Definition 5.3.1. A directed tree is a digraph whose underlying graph is a tree. A rooted

tree is directed tree with a root and a natural edge orientation either toward or away from

the root [116].
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Below, we consider only rooted trees whose arcs are oriented toward their root; our root

is the vertex reachable from all other vertices. Thus, the root is Rome and “Tutte le strade

conducono a Roma” (All roads lead to Rome).

Theorem 5.3.1. After n ≥ 0 mutations, ∀r ∈ R,G = (Hk, E) is a directed tree rooted at

hr, r’s current host.

Proof by Induction.

Base case, n = 0: G has |Hk| nodes. r is at origin, so there is no forwarding pointer at

origin, since (origin, origin) /∈ E. ∀h ∈ Hk − {origin}, fp(h) = origin. Thus, G has |Hk| − 1

edges and is connected. Therefore, it is a tree. Each edge is an arc whose terminus is origin,

so it is a directed tree rooted at hr.

Inductive step: Assume after n tree mutations, G is a directed tree rooted at hr.

Two FP rules mutate the tree of forwarding pointers — Rule 2, a resource move, and

Rule 3, the local update upon completion of a search.

Case Local Update: Let l ∈ H be the host of the finder f ∈ F . By the inductive

hypothesis, G is a directed tree rooted at hr. Thus the subtree rooted at l is a subtree,

as is the subtree rooted at hr after the l subtree has been removed. Rule 3 forms G′ by

changing l’s parent pointer to hr, thus directly hanging l subtree from hr. This change

preserves connectivity, the number of nodes, and edges. Thus, G′ is a directed tree.

Case Move: When the n + 1 tree mutation is a move, let r moves from hs to hd, for

hs, hd ∈ H.

Case fp(hd) = nil: In G, hs is the root of a directed tree. G′ = (H ′k, E
′) is formed

from fp′ = fp(hs := hd, hd := hd), so G′ adds a single node hd which is connected

by a single arc, hs → hd to G. In other words, |E′| = |E| + 1 and |H ′k| = |Hk| + 1|.

Since |E| = |Hk| − 1, |E′| = |H ′k| − 1. ∀h ∈ Hk, there is a path from h to hs, by the
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inductive assumption. (hs, hd) ∈ fp′, so G′ is connected. Thus, G′ is a directed tree

rooted at r.

Case fp(hd) 6= nil: Since any connected subgraph of a directed tree is also a directed

tree, the subtree rooted at hd is a directed tree and so is the subtree rooted at hs after

the subtracting the subtree rooted at hd. Rule 2 removes the arc from hd to its parent

on the path to hs in G, overwriting it with a self-arc that we ignore in the definition

of G′. Rule 2 also adds a new arc from hs to hd. This arc connects the tree rooted at

hd and the remaining tree rooted at hs. Since the number of nodes is constant, the

number of edges is constant, and G′ is connected, G′ is a directed tree rooted at hd,

the location of r after the move.

5.3.1 Correctness of FPc

Figure 5.6 demonstrates that cycles can arise if one naively adds path collapsing to the

unmodified FP algorithm. In Figure 5.6a, the finder f running at h ∈ H − {h0, h1, h2, h3}

follows the chain of forwarding pointers to r at h3 i.e. at a host not depicted in Figure 5.6.

The finder f then creates messages to update the forwarding pointers along the chain of

forwarding pointers it traversed while searching for r. The purpose of these messages is to

collapse the chain of forwarding pointers to point directly to h3. A message is sent to h0

and to h1, but not h2, because its pointer is already current, or h3, r’s current residence. In

Figure 5.6b, r moves backwards along the chain of forwarding pointers to h0, before h1’s

collapse message arrives. In Figure 5.6c, the collapse message for h2 arrives and creates a

cycle.

To prevent cycles, h1 must know to reject c: we must define Lamport’s “happens-before”

relation for forwarding pointers. As Fowler observed, counting the moves a mobile object

makes is sufficient to distinguish which of two forwarding pointers is more recent [30].

However, doing so sacrifices any information contained in a timestamp derived from a
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Figure 5.6: Path Collapse Introduces Forwarding Pointer Cycle

physical clock, such as how old a forwarding pointer is. A Lamport clock requires the

pairwise exchange of messages between all nodes interested in totally ordering some event.

This can be expensive and unnecessary if one knows some statistical properties of the physical

clocks that compose the system. Below, we implement a very simple and cheap clock and, in

so doing, allow a location service to retain, but not rely on, physical clocks. A proof using a

clock that counts moves is a straightforward simplification of this proof.

Proof Idea: Realizing FP with path collapse (FPc) requires additional rules. For each

search, a finder creates a unique marker, a “bread crumb,” with which it marks the hosts it

traverses while following the chain of forwarding pointers to a particular resource. Then it

sends collapse messages that share the bread crumb marking to each host along the chain.

The host only accepts the collapse message if its marking matches the host’s current marking.
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Let id : F → N assign a unique identifier to each finder f ∈ F . Let count : F → N assign

a unique identifier to each find issued by a particular finder.

Let B = N×N denote the set of “bread crumbs.” The first component of a bread crumb

either uniquely identifies a finder or denotes the null, or “scrubbed,” marking, and ranges

from 0 to |F |, the cardinality of F + 1. The second component sequentially identifies the

finds issued by that finder. Let m : H ×R→ B mark the fact that a finder has deposited

a bread crumb on h for some r. Let FM = R × B be the set of find messages. Let

Moves = R×H ×H be the set of resource moves.

Let CM = {(h0, r, h1, b) ∈ H ×R→ H ×B}, where h0 6= h1, denote the set of collapse

messages. The collapse message c ∈ CM is a four tuple consisting of a target host, a resource,

a forwarding pointer, and a bread crumb. Note the constraint that the target host and the

forwarding pointer must be distinct. Let HCM = {h | (h, r, hi, b) ∈ CM} denote the subset

of hosts for which a collapse message is pending.

FPc Rules: To the FP rules above, we add the following:

1. Create Find Message: At the start of a search for r, the finder f creates the find

message fm = (r, b) ∈ FM , where b = (id(f), count′(f)), for count′(f) = count(f) + 1.

2. Drop Crumb: Whenever the host h responds to the find message (r, b) with a

forwarding pointer, it sets m′ = m((h, r) := b).

3. Eat Crumb on Move: In addition to the actions in Rule 2 above, the arrival of r at

h sets m′ = m((h, r) := (0, 0)) to scrub the bread crumb at h.

4. New Collapse Messages: Each search issued by each finder adds an element to

CM for each host it visits along its path to r, except the host on which the finder is

running, the host on which r is found, and the penultimate host.

5. Receive Collapse Message: When hc ∈ HCM receives c = (ho, r, h1, b) ∈ CM , hc

drops c if hc 6= h0 or if b 6= m(h, r). Otherwise, hc sets m′ = m((hc, r) := (0, 0)) and

updates its forwarding pointer: f ′ = f((hc, r) := h1).
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Equation 5.13 uses a binary bread crumb to illustrate why each crumb must be unique.

Unique crumbs can prevent collapse messages from being processed out of order; however,

here we use them only to kill all collapse messages sent prior to a scrubbing.

i0 marks h =⇒ m(h, r) = T

r transits h =⇒ m(h, r) := F

i1 visits h =⇒ m(h, r) := T

i0 sends collapse to h =⇒ BOOM (5.13)

Theorem 5.3.2. Under FPc with path scrubbing, ∀r ∈ R,∀hc ∈ HCM , G = (Hk, E) is a

directed tree rooted at hr, the current location of r, after n > 0 tree mutations.

Proof by Strong Induction.

Base case: This base case is identical to that in Theorem 5.3.1 above.

Inductive step: Assume after n tree mutations, G is a directed tree rooted at hr.

Under FPc, three rules that mutate the tree of forwarding pointers, local update, the

receipt of a collapse message and a move.

Case Local Update: See this case in Theorem 5.3.1 above: the effect of the collapse

messages that occur prior to this local update do not violate the tree invariant because

of the inductive hypothesis.

Case Move: See this case in Theorem 5.3.1 above: the effect of the collapse messages prior

to this move do not violate the tree invariant because of the inductive hypothesis.

Case Collapse Message: Let receipt of the collapse message c = (hc, hd, b) ∈ CM be the

n+ 1 tree mutation. There are two cases:
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Case m(hc, r) 6= b: Another find overwrote b at hc with its bread crumb, or r transited

hc and scrubbed b. In either case, hc drops c and G is a tree by the inductive

hypothesis.

Case m(hc, r) = b: At the time that b was dropped, hc was the root of a direct

subtree and hd was the root of a directed subtree at that same time, by the strong

inductive hypothesis. Any moves r made after b was dropped also created trees,

by the strong inductive hypothesis. Thus, even if r moved into hc’s subtree or hd

subtree, thereby moving a host formerly in those subtrees to the root, the hc and

hd subtrees remained trees. At the time of the receipt of c, the hd’s subtree, with

the hc subtree removed, is still a tree. Thus, when we act on c, we form G′ by

making the hc subtree a direct subtree of hd. We conserve edges and connectivity.

Therefore, G′ is still a directed subtree.

5.4 A Comparison of Two Invocation Protocols under FP

Under a location service that uses a central directory, a natural invocation protocol for

mobile components is to first find the target mobile component, then invoke an operation

on it. We call this protocol “find, then invoke” (FI). This protocol generalizes easily to

forwarding pointers — the invoker simply issues finds to follow the chain of forwarding

pointers.

A location service based on forwarding pointers also makes feasible another invocation

protocol that integrates name resolution and routing — self-routing invocations (SI). Under

SI, when a host receives an invocation message for an absent component, it forwards that

invocation to the next host in the chain of forwarding pointers to that component. The SI

protocol does not make much sense in the absence of forwarding pointers, because each host

that receives an invocation that fails would be burdened with querying the directory on the

invoker’s behalf to forward the invocation.
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Figure 5.7: Two Invocation Protocols

Intuitively, SI is appealing because it sends fewer, albeit larger, messages and, as we

show below, suffers from a narrower race window than does FI. As this section unfolds, we

show that, to the contrary, FI is superior except in the pathological case of the target mobile

object moving at very nearly the rate at which invocations are generated. The decisive

difference between the two protocols is message size. This chapter shows that successfully

integrating name resolution and routing depends on the ratio of the size of a find message to

the size of the message routed to target. This ratio is an important, and heretofore neglected,

consideration for any project that proposes protocols that integrate name resolution and

routing, such as intentional naming [3] and location independent invocation [14].

In Figure 5.7, f is a find message, i is an invocation message, and a seeks to invoke an

operation on c. In both figures, the last known location of c at h3 is h0. Before a’s invocation

reaches it, c moves twice, reaching h2. Each message is subscripted with its temporal order.

In SI, an invocation itself follows the chain of forwarding pointers to the component for

which it was launched, as shown in Figure 5.7a. Figure 5.7b depicts an invocation under FI.

Here, the invoker a sends find messages to follow the chain of forwarding pointers for c to

h2, where it sends the invocation.

Under MAGE, the collocation of an invocation message and its target mobile component

at a particular host does not necessarily imply execution at that host, as a mobility attribute

is unlikely to have specified that host as the execution target. Thus, for both SI and FI,

a MAGE invocation usually entails an additional hop to its execution target, where the
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host at which the invocation caught up to its target mobile object forwards the invocation

message, swollen with the mobile object. This additional work adds the constant cost of

a single additional invocation message to both protocols, which we do not include in the

analysis that follows.

The two protocols trade-off the number of messages for their size. For x ∈ {fq, fr, i}, let

|x| be the size of the message. The message fq is a find query, and fr, a find reply. For brevity

and because we usually work with the find messages as a unit, we define |f | = |fq|+ |fr|.

Almost always, |f | << |i| holds, since a find query contains only the name of its target

mobile component and a find reply contains only a location, while an invocation message

minimally contains not only the name of its target mobile component, but also a target

method name, not to mention that method’s parameters, each one of which may be quite

large.

Intuitively, it would seem that this observation about messages sizes closes the case: FI

is superior to SI. However, while both protocols are subject to races with their target mobile

component, FI’s race window has twice the duration of SI’s since FI must both send fq and

wait for fr, its reply.

As in Section 5.2, we use M to denote the moves a mobile component makes and V

the invocations an invoker makes, both over the same time interval. M and V are Poisson

distributed random variables. Recall that r is the rate at which an invoker sends messages

and that we assume λm < r ≤ 1
tr

, for tr = RTT. The analysis that follows assumes a single

invoker, abstracting other invokers into the moves made by the target component.

Consider Figure 5.7b again. What if c moves before the invocation arrives at h2? After

FI’s find phase ends, a race occurs between c leaving h2 for some other host h4 and the

arrival of the invocation at h2. To handle this race, FI restarts, and begins a new find phase.

Figure 5.8 depicts the FI race in a sequence diagram. The actor a’s find request reaches

h2 while c is still on h2. Once h2 replies saying it hosts c, the race starts. There are two

races, both involving r1. If r1 occurs before r0, then a will know to continue following the

chain of forwarding pointers. This case is indistinguishable from the case where c was simply

not at h2 when a’s find arrived. The second race is between r1 and r2; the race window is
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race
starts

find c

invoke c

cr1

r2

r0

a at h3 h2 h4

c at h2

Figure 5.8: The FI Race

lower-bounded by RTT, the time for h2 to send its reply to a’s find and a dispatch of its

invocation message to arrive at r2. If r2 wins the race, then c executes the invocation and

the FI protocol ends; if not, the chase continues. In Figure 5.8, r1 wins the race.

The probability that FI wins the latter race with its target mobile component is e−λmtr ,

for tr = RTT, because this is the probability of zero moves after a successful find reply is

sent and the invocation arrives.

r0

r1

time

invoke c c

h1 h2 h4

Figure 5.9: SI Race

SI too is subject to a race. Figure 5.9 starts in the configuration that Figure 5.7a depicts.

Here, r0, c’s departure from h2 for h4, races against r1, i’s arrival at h2. Ignoring i’s size, i’s

travel time, and thus the race window, has duration tr
2 , since neither the invoker nor the

invocation forwarder need to wait for replies.

The probability that SI wins its race with its target mobile component is e−λm
tr
2 , because

this is the probability of 0 moves after an invocation message has arrived at h0 and before it

arrives at h1.
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Next, we compare these two invocation protocols for forwarding-pointer-based directory

services and show that, in the expected case, FI uses less bandwidth than SI, in spite of its

longer race window.

The moves the target mobile component made before the beginning of an invocation

must first be consumed. Figure 5.10 defines tb, the time between the end of one invocation

protocol and the start of another. We do not consider the interval between the start of

the two invocation protocols because, at the time of the successful invocation, the invoker,

by definition, knew the location of the target mobile component. Ignoring the possible

collocation of invoker and its target component, tb > 1
r , inverse of the rate at which the

invoker can send messages. Like λm, tb is a parameter of the model.

invocation
protocol

start of
invocationi−1

tb

invocationi−1

start ofend of
invocationi

Figure 5.10: Invocation End to Start Interval

The expected number of moves 〈M〉 in tb is λmtb. Traversing the chain of forwarding

pointers formed by these moves takes time, during which the mobile component can again

move, and so on. The time to traverse the forwarding pointers formed while traversing

the path formed during tb is (λmtb)tr, so the expected number of moves that occur during

this time is λm(λmtb)tr. In turn, the time to traverse the path of forwarding pointers

formed by the moves made while traversing these moves is (λm(λmtb)tr)tr, which generates

λm(λm(λmtb)tr)tr expected moves.

Let U be the number of moves until the invoker first catches up to its target component.
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〈U〉 = λmtb + λm(λmtb)tr + λm(λm(λmtb)tr)tr + · · ·

= λmtb(1 + λmtr + λ2
mt

2
r + · · ·

= λmtb

∞∑
j=0

(λmtr)i

= λmtb
1

1− λmtr
λm <

1
tr

=
λmtb

1− λmtr
(5.14)

5.4.1 FI Cost Analysis

Under FI, an invoker has caught up with its target mobile component c, when it receives a

reply to a find message that states “c is here.” FI alternates between sending finds to catch

up to its target mobile component, and sending invocations. After each failed invocation, it

must again catch up. As a simple optimization, the reply to a failed invocation contains the

forwarding pointer, which FI can immediately follow upon restarting the find phase of its

protocol. Equation 5.14, for tr = RTT, is the message cost of FI initially catching up to c,

after the start of a new invocation protocol.

The time it takes the invoker to again catch up with the mobile component is Equa-

tion 5.14, but with tb replaced by λmtr multiplied by RTT, the time to traverse the forwarding

pointer chain created by any moves that occurred during the transit time of the reply to

the successful find and that of the failed invocation message. Since λmtrRTT = λmt
2
r, the

expected number of messages to catch up again, after each failed invocation, is

λmλmt
2
r

1− λmtr
=

(λmtr)2

1− λmtr
(5.15)
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〈FIac〉 = |i|+ P (j > 0 moves before call arrives)[|f |(E(finds) after a failed call)

+ |i|+ P (j > 0 moves before call arrives)(|f |(E(finds) after a failed call) + · · · )]

= |i|+ (1− e−λmtr)[|f | (λmtr)2

1− λmtr
+ |i|+ (1− e−λmtr)(|f | (λmtr)2

1− λmtr
+ · · · )] (5.16)

In Equation 5.16, |i| is the cost of an invocation (call) and |f | is the cost of a find message.

After a successful find, the chance that a message, in particular an invocation, reaches the

mobile component’s host before it moves is P (no moves in tr) = e−λmtr , from the definition

of Point Poisson. Thus, after each find phase, the chance that the invocation we dispatch

wins the race with the mobile component and arrives in time is e−λmtr and the chance it

does not is P (j > 0 moves before call arrives) = 1− e−λmtr .

Each time the find phase of FI catches up with the mobile component, it sends an

invocation message which either succeeds or fails. An invocation fails whenever the target

mobile component moves after the reply to a successful find is sent from a host and while

the invocation is in transit to that host. If it fails, the invoker must first catch up again

and then send another invocation message. (λmtr)2

1−λmtr
is the E(finds) after a failed call from

Equation 5.15.

a = |f | (λmtr)2

1− λmtr
+ |i|

b = 1− e−λmtr (5.17)

Next, we derive a closed form solution of Equation 5.16. We form Equation 5.18 from

Equation 5.16, using a and b, as defined in Equation 5.17. We then rearrange Equation 5.18

to make clear that it contains a geometric series.
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〈FIac〉 = |i|+ (1− e−λmtr)[|f | (λmtr)2

1− λmtr
+ |i|+ (1− e−λmtr)[· · · ]]

= |i|+ (1− e−λmtr)[(a+ b)[(a+ b)[(a+ b)(· · · ]]]

= |i|+ (1− e−λmtr)a(1 + b+ b2 + · · ·+ bn)

= |i|+ (1− e−λmtr)a
∞∑
i=0

bi

= |i|+ (1− e−λmtr)
a

1− b
(5.18)

Finally, we undo the rewriting and simplify. Equation 5.19 captures the expected total

data, and implicitly the expected messages, FI transmits, after the invoker has first caught

up with its target mobile component and dispatched an invocation message.

〈FIac〉 = |i|+ (1− e−λmtr)
|f | (λmtr)2

1−λmtr
+ |i|

1− (1− e−λmtr)

= |i|+ (1− e−λmtr)
|f | (λmtr)2

1−λmtr
+ |i|

e−λmtr

= |i|+ (eλmtr − 1)(|f | (λmtr)2

1− λmtr
+ |i|) (5.19)

For |ir| = |i| + |fr|, Dfi is the data sent by FI, until the invocation i and its target

component are collocated.

〈Dfi〉 = E(finds) to first catching up + E(messages) after first catching up

= |f | λmtb
1− λmtr

+ |i|+ (eλmtr − 1)(|f | (λmtr)2

1− λmtr
+ |ir|) (5.20)

We use |ir| to denote the size of invocation message paired with a find reply, the

optimization under which a failed invocation acts as a find query.
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5.4.2 SI Cost Analysis

The expected data transfer required (and implicitly the number of invocation messages)

used under SI, 〈Dsi〉, differs from 〈Dfi〉 in two ways: We replace

1. tr with tr
2 , because, under SI, an invocation is a find, so at each step on the chain

of forwarding pointers, we do not notify the invoker, but rather simply dispatch the

invocation; and

2. |f | with |i|.

〈Dsi〉 = E(calls) to first catching up + E(calls) after first catching up

= |i| λmtb

1− λm tr
2

+ |i|+ (eλm
tr
2 − 1)(|i|

(λm tr
2 )2

1− λm tr
2

+ |i|) (5.21)

5.4.3 FI vs. SI

In these figures, we use RTT = tr = .606ms. The UNIX utility ping run for ten minutes

in February 2008 on the switched 100Mb Ethernet LAN in our laboratory reported this

number as the average RTT. Unless otherwise noted, we fix the remaining variables in

Equations (5.20) and (5.21) to following values, which we believe are reasonable to assume:

|i| = 5|f |, λm = .1
tr
, tb = 10tr = 6.06ms, and |fr| = .5|f | so |ir| = |i|+ .5|f |. The dependent

variable is the data sent, denominated in multiples of |f |, until an invocation message is

collocated with its target component.

Figure 5.11 varies |i| as a multiple of |f |. Figure 5.12 varies λm as a fraction of RTT.

Figure 5.13 varies tb in multiples of RTT. Except in in Figure 5.12, 〈Dsi〉 > 〈Dfi〉, and, even

here, SI only sends less data when a component moves often relative to RTT. Thus, we

conclude that FI is the superior invocation protocol, in spite of its wider data race window.
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Figure 5.11: Data Sent Delta
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Figure 5.12: λm as a Percentage of RTTms−1
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Figure 5.13: Varying tb

5.5 Related Work

Forwarding pointers are not new. They were first used in the DEMOS/MP distributed

system [83], which called them links and updated them only when a process moved to a

machine that had links pointing at that process. They were widely used in other early

mobile objects systems [14, 48, 96]. A number of distributed garbage collection techniques

use forwarding pointers [71, 81]. Researchers have also proposed and evaluated location

services that incorporate forwarding pointers for Personal Communication Services (PCS),

the infrastructure cellphones use [18, 19, 59].

In general, these projects describe the design and implementation of location services

based on forwarding pointers, but do not prove their correctness or analyze their cost. Below,

we review the work that, like this chapter, does tackle these questions.

5.5.1 Expected Message Cost and the Correctness of FP

Section 5.2 presents concurrent models of three location services in the presence of mobility

— a directory and two variants of forwarding pointers. Thus, our expected cost analysis

handles (1) multiple invokers; and (2) mobile objects moving while lookups and invocations
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occur. As a result, our analysis incorporates data races between invocations and moves. We

report bounds in terms of messages. Section 5.3.1 proves the correctness of a concurrent

path-collapsing forwarding pointers protocol.

Fowler’s “The complexity of using forwarding addresses for decentralized object finding”

is the seminal analytic work on forwarding pointers [30]. Fowler was the first to observe that

incrementing a counter in a mobile object each time it moves is a sufficient timestamp for

a forwarding pointer since we only need to know which of the two pointers is more recent.

Fowler formulates and analyzes three forwarding pointer variants, which he calls Lacc, Jacc,

and PCacc. Lacc is the näıve forwarding pointer protocol with no updates; Jacc includes

redirecting the local forwarding pointer after a successful find; and PCacc collapses the path.

He presents lower and upper bounds for these variants.

Fowler considers only forwarding pointers. He does not consider integrating name

resolution and routing. Like us (Section 5.2), Fowler assumes that machines do not fail, so

he does not consider fault tolerance and FP’s fault sensitivity. Fowler does not prove the

correctness of his forwarding pointer protocols. Unlike our analysis, Fowler counts access

(find) attempts; that is, the injections of an access message. He does not count the re-sends

of that message during the traversal of a chain of forwarding pointers. Thus, Fowler’s model

does not account for races between moves and accesses. Fowler’s PCacc does not handle

concurrent accessors (invokers), as our FPc does. In short, he analyzes a simpler and less

practical problem than we have in this chapter.

Shapiro et al. proposed a form of forwarding pointers with a focus on garbage collec-

tion [90, 91]. They gave their proposal the sobriquet “SSP Chains,” where SSP stands

for stub scion pairs. Scions are skeletons and are used during local garbage collection to

reach and keep alive stubs. A stub has fixed targets, usually scions, and does not contain a

universal unique identifier (UUID) for its target mobile object; Shapiro et al. claim removing

UUIDs from stubs is essential for performance. Sending a remote reference or migrating

an object extends SSP chains. The former complicates the use and maintenance of SSP

chains and is a direct consequence of the fact that SSP stubs do not contain a UUID and

therefore cannot query a name service to follow the chain to their target object. In this
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thesis, a remote reference is a stub that does contain a UUID and can therefore directly

query the name service to traverse the FP chain to its object. Practically, this is why the

FP variants proposed in this thesis do not extend an FP chain when a reference moves from

one host to another.

Shapiro et al. never shorten an SSP chain, except to reclaim the chain when it has no

users. A shortcut is the update of the local forwarding pointer after a successful lookup.

In SSP, a shortcut is only a hint, stored as a weak reference. Finds do not alter strong

SSP chain, which is created by object and reference movement creates. These properties

allow SSP chains to support concurrent access. They suggest path-collapse as a possible

optimization, but, like a shortcut, only as a hint. In contrast, this thesis proposes, analyzes,

and proves correct FP variants that do alter shared forwarding pointer chains.

Shapiro et al. consider machine failure although they rely on the strong assumption of a

failure detection oracle. We have left machine failure for future work. They do not provide

an asymptotic analysis of their protocols, nor prove their correctness.

The Arrow Distributed Directory Protocol is a simple protocol that acquires exclusive

access to a mobile object [22]. When a node issues a find for a target mobile object, each

arc in the forwarding pointer tree that the message traverses on its path from the finder to

the object flips to point toward the finder. When the find messages reaches the object, a

new tree rooted at the finding node forms. The object then traverses the newly formed path

to the finder, which then has exclusive access to the mobile object. The arc-flipping caused

by a find message traversal disconnects the tree while the find message is progressing toward

its target. This fact handles contention elegantly. An invoker in the finder’s subtree will

find the finder and block there waiting for the finder to release the object. An invoker in

the object’s subtree proceeds normally. Demmer et al. prove the correctness and complexity

bounds of the Arrow protocol.

The Arrow protocol only handles exclusive access: in it, the accessed mobile object

always moves to the finder’s location. In terms of MAGE, this is equivalent to an invoker

using only COD. The protocols analyzed in this chapter allow executing operations in place,

as well as moving the target object to an arbitrary node in the graph. The Arrow protocol
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is well-suited for use in realizing write access in distributed shared memory, as a review of

its citations in the research literature makes clear.

Moreau formalizes a fault tolerant forwarding pointer location service [72, 73]. He

describes a mechanical proof of its correctness using the proof assistant Coq [12]. As we

have noted above, näıve forwarding pointer protocols are fault sensitive: the probability

that an object becomes unreachable increases with the length of a forwarding pointer chain.

Moreau’s protocol addresses this problem by collapsing a length n suffix of the forwarding

pointer chain. A mobile agent remembers the last n hosts it visited. Upon arrival to a new

host, it updates the forwarding pointers of those n hosts.

Moreau’s protocol enqueues messages at a mobile object’s last host during migration

rather than tolerating transient cycles (as we do), which works well when you include a

laptop as a possible host. After arriving at its new host, the mobile object itself collapses

the path and is unavailable until it finishes. Multiple invokers simply queue at the mobile

object’s last location. Their finds can race with the suffix collapse, but if they lose, they

simply follow a longer path to the object. Thus, Moreau’s protocol handles concurrent

invokers. Recall that we named our the path-collapsing FP variant FPc. The price FPc pays

asynchronously after an invocation, Moreau pays during migration, since the suffix collapse

occurs during migration. Many invokers cooperatively drive the FPc cost to zero; Moreau’s

cost is fixed at n per migration.

Moreau does not analyze the bounds of his protocols, except when he considers the

cost of collapsing the suffix of an FP chain. Thus, he does not confront the difficulty of

accounting for races between moves and finds. Relying on 25,000 Coq tactics3, Moreau’s

correctness proofs are much longer and more complex than the ones we have presented in

this chapter.
3A deduction rule links premises and a conclusion. In backward reasoning, the conclusion is the goal and

the premises are subgoals. Tactics implement backward reasoning. When applied to a goal, a tactic replaces
the goal with its subgoals. Thus, a Coq tactic is a command that realizes one or more steps of a proof [98,
Chapter 8].
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5.5.2 Directory vs. Forwarding Pointers

Section 5.2.4 compares the lookup and maintenance cost of a single directory to two forwarding

pointers variants using expected analysis that incorporates races between invocations and

moves.

In a distributed setting with mobile objects, like MAGE, Alout et al. use Markov models

to compare the access (find) cost of FP and D [5]. Their model is quite detailed: for instance,

it uses random variable to model such things like migration time, where our model implicitly

uses expected time via RTT. An important difference is that they consider only access time,

not the time to update the directories. Further, their analysis assumes a mobile object does

not revisit a host. They assume that chains of forwarding pointers are not shared, that each

accessor/object pair has its own chain. Under this assumption, path collapse does not make

sense. However, they do not consider shortcuts, which are relevant to and could improve the

performance of their protocol. Like us, they assume hosts do not fail.

Finding an optimal location service for Personal Communication Services (PCS) is

important to the telecommunications industry, because it would save money in infrastructure

costs and improve service. Thus, a number of researchers have compared forwarding pointers

to a directory, which is called a home-location register (HLR) in the PCS literature,

Jain et al. attack precisely the question we have asked: under what circumstances is FP

superior to D [47]. Their callers do not shortcut, i.e. cache the result of a find. They do

not consider path collapse. They bound the length of forwarding pointers: every k move,

they update the HLR. In the PCS context, a FP protocol must send a message back to the

previous visitor-location register (VLR), which is analogous to a host in our analysis, because

a mobile device can only detect that it has left that VLR after the fact. These differences

lead them to show, under various probabilistic assumptions about a mobile user’s movement

behavior, that FP only wins when the call to move ratio is less than 0.5, in contrast to our

result which is independent of the call to move ratio.

Krishna addresses the D vs. FP question in his dissertation [54, Chapter 3]. He models

the problem using time-cost, not messages. He considers two variants of bounded-chain FP,
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one which, like the variant of Jain et al., updates the HLR every k moves and another which

updates the HLR after some k searches. Finally, he introduces shortcutting, which he calls

“search-update,” versions of these two variants. Like Jain et al., he shows that FP performs

better when the call to move ratio is low.

Chang et al. propose a hybrid location service that uses forwarding pointers to build a

virtual local directory out of adjacent VLRs that a user frequently visits [18]. Only when

a user moves out of the virtual directory does the HLR need to be updated. To compare

their scheme to competing alternatives, including directory and FP, they count the update

messages sent to the HLR and VLRs during a single itinerary. Under this itinerary, the FP

variant they consider sends 1 message to the HLR and 9 to VLRs, the directory approach

sends 5 messages to the HLR and 5 to VLRs, while their approach sends 1 message to the

HLR and 6 to VLRs. Unsurprisingly, their approach performs best under the itinerary they

choose. The FP variant they consider does not shortcut or collapse paths.

5.5.3 FI vs. SI

Section 5.4 compares two invocation protocols based on forwarding pointers — one that

maintains the traditional separation of name resolution and routing (FI) and one that

integrates them (SI). We show that message size is a critical factor in determining which to

use, and that integration does not make sense when the routed message is larger than a find

message, as generally holds when the routed message is an invocation. We demonstrate this

result holds when the routed message is 5 times larger than an find message.

The Hermes project integrates name resolution and routing in its invocation protocol [14].

“Intentional naming” [3] proposes a location service that integrates name resolution and

message routing. Neither of these projects consider the conditions under which integrating

name resolution and message routing makes sense. To our knowledge, we are the first to

consider this question.
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5.6 Future Work

This chapter focuses on two directory schemes — a single, centralized directory and forwarding

pointers. An interesting avenue for further research is to analyze other directory schemes in

terms of their message cost. For instance, a D-FP hybrid that partitions the hosts among a

set of directories. Under this scheme, when a mobile component leaves one directory’s region,

it forms a chain of forwarding pointers that connect each region’s directory. It would also be

interesting to extend this analysis to the distributed hash tables, such as Chord [94], used in

P2P settings. We showed that FP is superior to D for a single invoker in Section 5.2.4. We

intend to extend this analysis to multiple invokers for FP and FPc.

The random model of movement and invocation presented here uses Poisson random

variables. With the aid of application specific knowledge, such as traces, it may be possible

to build more accurate models. For presentation clarity, the analysis presented in this

chapter assumed that machines do not fail. We plan to revisit our analyses in the presence

of machine failure and explore fault tolerant versions of the protocols we have considered,

in addition to quantifying the fault tolerance protection afforded by frequent path collapse.

Finally, one could use simulation and experiment to further explore this problem space and

verify the analysis.

5.7 Summary

In this chapter, we have discussed location services in the presence of mobility. We presented

forwarding pointers and contrasted them with a single centralized directory, and showed that

forwarding pointers require fewer find messages on average. We defined and proved correct a

concurrent path-collapsing variant of forwarding pointers. We then introduced and analyzed

two invocation protocols built on forwarding pointers — “find, then invoke,” which maintains

the traditional separation of name resolution and routing, and “self-routing invocations,”

which integrates the two. Conservatively assuming invocations are larger than finds, we

show that the “find, then invoke” protocol requires a smaller expected data transfer before a
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successful invocation than “self-routing invocations” except when a mobile component moves

rapidly, which given the cost of movement, is unlikely to persist in well-behaved applications.
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Chapter 6

Implementation

Program construction consists of a sequence of refinement steps.

Niklaus Wirth

In this chapter, we discuss the challenges faced in the implementation of MAGE. First,

we set the stage with a brief description of RMI’s runtime, against which we present the

MAGE runtime as a sequence of modifications and extensions. Then, we broadly follow the

outline of Chapter 4, and describe the challenges in implementing the MAGE primitives

and operations on those primitives. In closing, we discuss the limitations of the current

implementation, then summarize the chapter.

6.1 Challenges

In principal, MAGE could be built on any language that provides mobility, such as Java,

D’Agents [36], Messengers [31], or Ajanta [102]. We choose Java as our implementation

platform because of its platform independence, widespread availability, and support for

remove calls via RMI and serialization, hereafter referred to as marshaling1. We realized
1So far as the author knows, Sun introduced the use of the term serialization, as opposed to marshaling,

to refer to the writing of data, such as an object, to a bit string. In fact, Sun distinguishes serialization and
marshaling, which it restricts to codebase-annotated serialization [87]. This distinction is highly Java-centric.
In spite of Sun’s marketing prowess and the success of Java, this author prefers “marshaling” because
serialization already has a useful technical definition in concurrent programming where it refers to the
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MAGE as a Java class library to ease and facilitate its deployment. The MAGE runtime

system is built upon and extends the Java RMI class library and its runtime system.

The RMI’s registry was inadequate as it is designed to catalog Remote objects on a

single host, not a cluster. MAGE uses forwarding pointers, to decentralize MAGE’s directory

service and for efficiency, as described in Chapter 5. This decision means that every MAGE

host must store forwarding pointers for each mobile object that either visits or is invoked

from that host. The principal challenge in implementing a forwarding pointer directory

service is preventing the formation of cycles. A simpler solution would have been to use a

single, centralized directory.

The decision to use Java means that MAGE inherited Java’s assumption that objects are

immobile, that they spend their entire lifespan in a single address space. This assumption

means that

1. the client leases that Java’s Distributed Garbage Collector (DGC) server hands out

have the remote server immutably embedded within them;

2. a Remote object can have static fields;

3. a Remote object can always be replaced with a proxy during marshaling, as when it

is an actual in a remote invocation; and

4. an invocation, absent synchronization, can always proceed.

To solve the DGC challenge, MAGE modifies Java’s DGC to follow an object’s chain

of forwarding pointers to renew its lease, just as a MAGE invocation must. From the

point of view of MAGE applications, DGC occurs out-of-band. Although DGC could, in

principle, compete with applications for the CPU and bandwidth, preliminary tests showed

no measurable performance impact. MAGE relies on programmers to eschew static fields

when defining mobile classes. To prevent RMI always replacing a mobile object with a proxy,

MAGE extended the marshaling framework to distinguish whether or not to marshal the

execution of a critical section by one thread at a time.
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mobile itself or a proxy to it. The cost of this solution is single condition on a reflective call

to determine whether a marshaled object is a descendant of MageMobileObject.

Mobility complicates a remote invocation protocol, not so much because a mobile object

may have moved once an invocation arrives, but because the mobile object may be preparing

to move. When the mobile object has already moved, the protocol can simply be restarted.

To move, a mobile object must capture all updates to its state made prior to departure.

To capture these updates, MAGE prevents new threads from entering a moving object

and waits for threads already running in that object to finish. MAGE sends exceptions to

the invokers of post-moving invocations to block the entry of new threads. These invokers

immediately restart their invocation protocol, subject to a starvation limit. Draining can,

of course, take a long time and fending off invokers that immediately restart is wasteful.

Blocking the post-moving invocations in a lock queue and then freeing them all at once,

when the executing threads had drained and the mobile object had departed, is likely to

lead to better performance. Locking issues surrounding handling movement in the presence

of asynchronous incoming calls are tricky, and discussed in detail in Section 6.5.4 which

contains Algorithm 6.4.

Mobility attributes further complicate the invocation protocol. The remote invoker must

run his local mobility attribute, and embed the result in the invocation. Then the mobile

object’s host must run the server, or component mobility attribute, if one is bound, and

combine that result with the result of the invokers.

When an invocation reaches a mobile object at a host other than the ultimate execution

target, the mobile object must move. The connection over which the invoker sent the

invocation and, under RMI, would expect to receive the result is to the host at which the

mobile object was found. Two solutions leap to mind: 1) The invocation can either be

forwarded to the execution target and the result routed back to the invoker via a listener; or

2) the mobile object can move, be locked in place, and the invoker instructed to re-issue its

invocation to the execution target. The current implementation chooses the former solution,

because no other invocations can occur between arrival at the execution target and the

invocation that triggered the move.
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“There are known knowns. There are things we know that we know. There are

known unknowns. That is to say, there are things that we now know we don’t

know. But there are also unknown unknowns. There are things we do not know

we don’t know.”

Donald Rumsfeld

Defense Department Briefing, February 12, 2002

There are undoubtedly many ways to improve the MAGE implementation, many of

which are unknown unknowns. Two known known and one known unknown suggestions for

improvement include the following:

1. On the hot path of a MAGE invocation, java.util.HashSet is instantiated twice.

Since the set of hosts in a MAGE cluster is likely to be relatively static, using bit maps

to represent sets is likely to improve invocation performance.

2. Invocations on a mobile object made by an invoker collocated with that mobile object

are not local, but remote call and are therefore marshaled and traverse TCP/IP stack

over the loopback device. Each MAGE host could maintain an id → proxy map. Then,

when a mobile object arrives, MAGE could use the arriving object’s id to set a direct

reference to itself in each of its local proxies. Thereafter, calls on these proxies would

be local. When id departs, MAGE would null the direct reference in each of id’s

proxies.

3. Verify the design decision to use a listener to manage results, by empirically comparing

the two result management protocols. The fact that the listener allows MAGE to

provide fine-grained concurrency via futures2 is ancillary.

6.2 The RMI Runtime System

Definition 6.2.1. An RMI remote object is an instance of RemoteObject that can receive

and execute remote invocations.
2Section 6.3.5 defines and discusses futures.
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Service Map
RMI registry name → proxy
invocation server id → RemoteObject
DGC server id → LeaseInfo
activation server id → RemoteObject

Table 6.1: RMI Maps

Definition 6.2.2. An RMI proxy or stub is created for a specific remote object. It stores its

remote object’s host, or server. It marshals an invocation, sends the marshaled invocation

to its remote object’s server, and unmarshals the result.

RMI adds two primitives to Java — remote objects and proxies to remote objects.

A remote object receives and executes calls that an invoker sends to it via a proxy. To

realize this functionality, RMI runs an invocation server, a registry, a distributed garbage

collector, and an activation server3. Table 6.1 lists these servers and the mappings they

maintain. Chapter 2 gives an extended example of an RMI application that illustrates RMI’s

programming model.

6.2.1 Invocation Server

RMI’s invocation server4 listens for invocation messages, looks up each invocation’s target

remote object, executes the invocation in the context of that remote object, and replies with

the result. An ObjID is a class whose instances are globally unique identifiers for remote

objects. The invocation server maintains a map of identifiers to remote objects. Proxies

embed their remote object’s identifier in each call they marshal. RMI’s invocation server

extracts this identifier to look up the target remote object.

Definition 6.2.3. Exporting is the act of binding an identifier to a RMI remote object with

an invocation server so that it can receive and execute incoming, remote calls.
3RMI’s activation server allows a server to export remote objects that hibernate (are stored on disk not in

memory) unless a client invokes them. MAGE does not support the hibernation of its mobile objects.
4The invocation server is called the RMI server in the Java RMI documentation. For clarity, we use the

more precise name.
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6.2.2 Distributed Garbage Collection

When you couple a distributed programming model, like RMI, with a garbage collected

language, such as Java, you introduce the problem of remote references to locally dead

objects. A server’s garbage collector cannot simply collect remote objects when they are

locally dead, because some client may still be using them. Not collecting these remote

objects at all can lead to an object retention memory leak, because they may have no remote

clients. Java’s distributed garbage collector framework solves this problem by associating a

lease with each remote object. Each time a client unmarshals a proxy, it requests a lease

from the remote object’s server. Before that lease expires, the client must renew it, or the

server is free to collect the remote object.

6.2.3 Registry

A client requires a proxy to invoke operations on a remote object; in general, it acquires

that proxy from an RMI registry. The RMI registry (rmiregistry), which listens on the

well-known port 1099, binds a remote object’s name to a proxy.

To bootstrap an RMI application, the client and server must share an interface that

extends the Remote interface and defines a set of methods, and the client must statically

know the URL of a host that is running rmiregistry and has exported the named remote

object that implements the shared interface.

6.3 The MAGE Runtime System

MAGE modifies and extends the RMI runtime to handle mobile objects. In this section,

we motivate and explain each of the required changes. Table 6.2 summarizes the MAGE

services and the maps they maintain. The InetSocketAddress class wraps a IP address,

port pair. Below, we discuss each service.
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Service Map
MAGE registry id → InetSocketAddress

InetSocketAddress → MageRegistry
class server name → class-bytes
listener tag → result
VM port host → port
resource manager String → Object

Table 6.2: MAGE Maps

6.3.1 Invocation Server

The MAGE invocation server’s behavior is a superset of that of the RMI invocation server:

it must handle the movement of remote objects. Upon receipt of an invocation, the MAGE

invocation server must check whether the target mobile object is present, since another

invocation may have moved the mobile object after the current invocation was dispatched.

If the object has moved, the invocation server throws an exception, which restarts the find

phase at the invoker. Otherwise, it checks whether it is the invocation’s execution target.

If not, it unexports the mobile object from the invocation server, adds the mobile object

to the invocation, and forwards the invocation to the execution target. We describe the

implementation of MAGE’s invocation protocol in Section 6.5.4.

6.3.2 Distributed Garbage Collection

Since RMI remote objects cannot move, the RMI DGC client need only renew each lease

with the DGC server that issued that lease. MAGE’s mobile objects introduce the problem

of notifying the DGC server of a mobile object’s current host. When a DGC client attempts

to renew the lease on a host that no longer hosts a mobile object, that host’s DGC server

informs the client that the object has moved. When so notified, MAGE DGC clients follow

their mobile object’s chain of forwarding pointers and update the DGC server to which they

will direct their next renewal attempt to their object’s current location.
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6.3.3 Class Server

Sun’s Java tutorial gives the code for a class server, which listens for and responds to requests

for class definition, or class bytes [69]. Java’s marshaling, aka serialization, libraries can

annotate outbound objects with the URL of the codebase that contains class definitions

that do not exist at the unmarshaling host. The unmarshaler uses this URL to contact

the class server. In Java, such annotation is needed when a parameter passed to a remote

method is an instance of a class unknown at the unmarshaler. This occurs when a client

passes actuals that are instances of a local class that implements an interface or subclasses a

class in the target remote method’s signature, which the client and server necessarily share.

MAGE leverages these annotations to propagate the class definitions of mobile objects, as

they sojourn in the network.

6.3.4 MAGE Registry

In addition to relying on rmiregistry, the MAGE registry adds two components —

MageRegistryServer and MageRegistryImpl. MageRegistryImpl maintains a

map of ObjID identifiers to forwarding pointers. There is an entry in this map for each

mobile object that has either been invoked from or visited the machine on which the singleton

MageRegistryImpl is running (Chapter 5).

MageRegistryServer implements MAGE’s find operation. When following a chain

of forwarding pointers, it often needs to contact the same remote MageRegistryImpl

instances over and over. To improve performance, MageRegistryServer caches proxies

to remote MAGE registries in a map that binds an IP address and port pair to a proxy.

Upon startup, the MAGE registry reads an initial list of MAGE VMs into an in-

stance of HashSet<String>. This set tracks the universe of MAGE VMs. The com-

plement mobility attribute operator is defined in terms of this set, which it accesses via

MageRegistryServer.getVMs(). A limitation of the current implementation is that

this list is static (Section 6.6).
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Figure 6.1: Protocol Without Listener

6.3.5 Invocation Return Listener

The point of MAGE is to control object mobility. Often the mobile object o that is the

target of an invocation is found at s, not at the desired execution engine t ∈ T . The question

is how to move it to t. MAGE could either first explicitly move o to t or make the move

implicit to the handling of an invocation.

Figure 6.1 depicts a protocol that explicitly sends a move message. First, a sends an

explicit move message for o to s. The move message contains the T that a’s mobility

attribute calculated so that s can use it as an input in the application of o’s component

mobility attribute, if one is bound. It also contains a globally unique tag. To prevent a from

starving, the target t immobilizes o until it receives the invocation from a identified by the

tag. A component mobility attribute may select any t ∈ T or even override a’s T altogether,

so s must inform a which t was selected, with the message “o at t.” Then a makes an RPC

invocation on o at t, by sending the pair (i, tag) to t and awaiting the result r as shown.

The target t uses the tag to identify the invocation that frees o to move again. While o is

immobilized, it can execute operations that do not require it to move.

This solution requires a to block until it receives r and the addition of an explicit, distinct

move message to the invocation protocol, and six network messages. To prevent starvation,

it also requires that o be immobilized at t until a’s invocation arrives. Preventing starvation
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comes at a cost: what to do if the invocation never arrives? There are four responses:

1) allow starvation; 2) a could resend the invocation after a timeout if it does not receive

a result5; 3) free o after a timeout period; or 4) accept that o may simply be immobilized

indefinitely. MAGE’s current implementation uses response 4, because immobility does not

impact correctness and allows an application to progress, albeit at some performance cost.

Empirically verifying this design decision is future work.

Figure 6.2 depicts the protocol that results when the move is implicit to an invocation.

Here, we require a listener, as we do not wait to directly tell a which t was selected. First, a

acquires a globally unique tag and an associated future from its local listener l. A future

is an object that will hold the result of a future computation, here an invocation on o at

t [39, 60]. Then a sends its invocation together with the tag to s the host at which a found

o. The host s then marshals the mobile object o, builds the message (i, tag, o) and sends it

to t where i executes. The host t then sends the result r together with the tag to l. The

listener l uses the tag to put the result in the future identified by the tag.

A future is a mechanism that allows asynchronous RPC calls. When the caller invokes an

asynchronous RPC call that supports futures, the caller immediately receives a future rather

than blocking on the call. The caller is then free to perform other work in parallel to the

remote call. At any time, the caller can check the future to see if the result has arrived or

simply block on the future when the caller has exhausted the available concurrency [39, 60].

Thus, a future allows a to exploit the network latency of an RPC to perform other work

in parallel instead of simply blocking. If a has nothing else to do and wishes to make a

synchronous call, it simply immediately calls the future’s blocking method for acquiring that

result. The target execution engine forwards exceptions, if they occur through r. If, for

some reason, o never executes and nothing is ever returned, a will block indefinitely on its

future, just as the caller would do in a standard RPC call that never returned.

In addition to providing the parallelism of a future, this approach has other advantages.

The actor a’s interactions with l occur within an shared address space; they are memory
5This approach is closely related to the general problem of RPC semantics in the face of failure, viz. the

choice among at-least-once, at-most-once, or exactly-once semantics.
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Figure 6.2: Listener Protocol

reads and writes. Thus, although this approach requires the listener l, it requires fewer

network messages, three vs six; it does not require an explicit move message: nor must

it immobilize o while it waits for a’s invocation i, but instead can execute i immediately

upon o’s arrival. For these reasons, the current MAGE implementation uses a listener. The

resulting invocation protocol is described below in Section 6.5.4.

6.3.6 VM Port Discovery

By default, RMI’s invocation server listens at an ephemeral port assigned by the operating

system, to ease running multiple invocation servers on a single host. This causes no problems

for RMI since, by convention, an invoker bootstraps by downloading a proxy from the

rmiregistry running on that host. The rmiregistry binds to the well-known port

1099 and each proxy contains the port of its remote object’s invocation server.

When running multiple MAGE invocation servers on a single host, MAGE cannot simply

extract the invocation port from a proxy for the mobile object o, as RMI does, because of the

MAGE invocation protocol may require o’s current host to forward o to another invocation

server whose port is unknown to both o’s invoker and current host. To partially solve this

problem, MAGE provides a port discovery mechanism.

This discovery mechanism allows a client to specify a target location using only a host
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Listing 6.1: Resource Manager Usage

HashMap loadByCPU = (HashMap) rm.get("CPU");
Integer load = (Integer) loadByCPU.get("sytem-of-interest");

address and no port. When a MAGE invocation server receives an invocation whose target

is only a host address and it does not already know that host’s default port, it learns

the port at which that host’s invocation server is listening as follows: It contacts that

host’s rmiregistry to get a proxy to that host’s VM port server. That proxy supports

getPort() which returns the address of the default invocation server on the machine on

which the VM port server is running. This solution is partial because it designates one of

the n MAGE instances sharing a machine as the default invocation server, and does not

provide a general way to discover all of their ports.

6.3.7 Resource Manager

The MAGE resource manager is a subclass of Java’s Hashtable that implements Remote

and therefore allows remote queries and updates. The MAGE resource manager is loosely

typed: for maximum flexibility, it maps String to Object instances. A programmer nests

hash tables to store hierarchical data. Thus, a resource is anything that can represent itself

as a graph of Java Object instances.

In Listing 6.1, looking up “CPU” returns a hash table that maps a host name to a

string containing that host’s load average. The application developer must have previously

populated the queried rm with the requisite load data.

Each JVM running MAGE publishes a resource manager. MAGE does not automatically

provide any resource information in its resource manager, instead leaving that task to the

application developer. The purpose of the resource manager is to provide a convenient

API for communicating resource state or handle to a resource to a policy that a developer

embodies in a mobility attribute.
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6.4 Primitives

In this section, we first present the challenges in implementing MAGE’s mobile object and

proxy primitives, then the solutions we implemented.

The challenges faced in implementing MAGE’s mobile object follow:

Marshaling When an RMI remote object is an actual in an invocation, RMI marshals a

proxy to the remote object, not the remote object itself. MAGE needs to support both

this behavior, when a mobile object is an actual, as well as marshal the mobile object

itself for movement.

Static Fields In standard Java, a class and all of its instances share a single address space.

Thus, static fields, field defined on the class itself, not its instances, are a convenient

mechanism for sharing data across instances. Mobility complicates the story: the

instances of a class are no longer guaranteed to share an address space, and the class

definition itself must exist within every address space that contains an instance.

Direct References To move the mobile object o to t, MAGE marshals a clone of o, sends

that clone to t, unexports o, then updates the forwarding pointer for o to point to t,

thereby implicitly updating all local proxies for o. Local references to the instance of o

before it was cloned present a problem: any writes to this now dead clone are lost.

Initially, MAGE modified rmic, the RMI compiler, to produce MAGE proxies. In Java 5,

RMI deprecated rmic and replaced it with the dynamic generation of proxies that support

the signatures defined by an application’s remote interface, but delegate the bulk of their

implementation to an instance of RemoteObjectInvocationHandler. This class uses

reflection to make the remote call. This abstraction simplified the implementation of MAGE

proxies: the logic is now concentrated in MageInvocationHandler.

In RMI, the Remote interface defines only a type recognized by rmic and now by the

dynamic proxy generator6 to signal the creation of a proxy. MageMobile defines the bind

methods that MAGE proxies must support. Ideally, MageMobile would obviate Remote
6The class magesun.rmi.server.Util in MAGE.
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in a MAGE application, but that would require changing the dynamic proxy generator to

recognize MageMobile instead of, or perhaps in addition to, Remote. This work, and its

attendant testing, has not been done in the current implementation.

6.4.1 Mobile Objects

A language’s support for mobility ranges from strong to weak. Under strong mobility, both a

mobile component’s code and execution state moves; under weak, only a mobile component’s

code moves [16]. On this continuum, Java is fairly weak, since it does not move stack or

register state, although it does move heap state.

Figure 6.3: MAGE Mobile Object Class Diagram

On the server side, an RMI re-

mote object registers with RMI’s

invocation server and can re-

ceive and execute invocations

from remote clients. In any re-

mote procedure call implemen-

tation, client and server must

share an application-defined inter-

face through which they can com-

municate. Here, AppIface is

that interface. RMI remote ob-

jects simply implement AppIface,

which extends RMI’s Remote in-

terface. MAGE mobile objects,

in contrast, must both imple-

ment AppIface and inherit from

MageMobileObject, as shown in

Figure 6.3. We discuss MageMobile in Section 6.4.2, which follows.

MageMobileObject serves two purposes: 1) it defines the behavior that allows a

programmer to lock the mobile object to a host as well as supporting the binding of
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mobility attributes directly to a component (Section 3.6); and 2) it defines a type and

a field that MAGE uses to control the marshaling of a MAGE mobile object. RMI uses

Java’s serialization library’s replaceObject() method to override that library’s default

marshaling behavior. When a remote object is marshaled, its associated RMI proxy class

(next section) is marshaled in its place.

For a mobile object to move, it must be marshaled, not its proxy, so MAGE must override

this behavior. However, a MAGE mobile object potentially moves only when it is invoked,

not merely referenced. Thus, when a mobile object is a merely a parameter in a remote call,

MAGE must support RMI’s default behavior and marshal that mobile object’s proxy, not

the object itself. MAGE uses MageMobileObject and its move field to distinguish these

two cases. While a mobile object resides on a particular host, its move field is false. When

MAGE marshals a mobile object for a move, it sets its move to true. This field remains true

in the now-dead version of the mobile object left behind by the move. Threads in active

mobile objects use this fact to stop and release the object for garbage collection.

To complete the discussion of Figure 6.3, we note that RMI’s RemoteObject class im-

plements the java.lang.Object behavior for remote objects and RMI’s RemoteServer

class is the common superclass to server implementations. AppIface denotes the application

interface that defines the remote methods that instances of AppMobileClass can receive.

We discuss it further in the next section.

In Java, a static field is a field shared by all instances of a class in an address space.

Obviously, maintaining field sharing becomes costly when an object can move and instances

can move among address spaces. By default, RMI does not marshal static fields, thereby

punting this sharing problem to the programmer. If the programmer is sufficiently motivated,

she can write and exclusively use getters and setters that broadcast updates to VMs that

are hosting an instance of the class, write custom marshaling via Java’s readObject and

writeObject methods to track the set of VMs where instances exist, and roll her own

replication mechanism. MAGE follows RMI’s lead, and leaves the handling of static fields in

mobile objects to the programmer. By default, MAGE objects exist in only one namespace

at a time.
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Like an RMI remote object, a MAGE mobile object is kept alive by proxies held by its

clients, renewing their leases with the DGC server of the mobile object’s current host. When

a MAGE mobile object moves, it unexports itself, which unregisters it both from a VM’s

invocation and DGC servers on the VM it is leaving7. On all systems, other than a mobile

object’s origin host, access to that mobile object is mediated by a proxy acquired from the

RMI registry, so this action removes all references to the discarded copy of the mobile object

on that VM, leaving it eligible for collection by the local VM’s garbage collector. A thread

running on a mobile object’s origin host could hold a reference to such a discarded clone,

and violate MAGE’s invariant that a mobile object exist in only one namespace at a time.

MAGE does not track and therefore cannot replace local references with proxies. Ideally, the

compiler would warning about a local reference to a mobile object. Currently, MAGE relies

on the programmer to respect the convention that they should eschew direct, non-proxy

references to mobile objects8. To allow a mobile object’s clients time to catch up with a

mobile object after it has decamped to a new host, MAGE pins mobile objects, thereby

making them unreapable for one lease renewal period, which defaults to 10 minutes. This

default can be changed by setting the property mage.rmi.dgc.leaseValue.

6.4.2 MAGE Proxies

The remote procedure call paradigm, of which RMI is an instance, relies on proxies, or stubs,

to marshal calls at the client for writing to the network. A proxy generator creates these

proxies automatically, either statically via the now deprecated rmic compiler prior to Java

5 or dynamically since Java 5. In both cases, remote proxies are generated for classes that

implement the Remote interface. Thus, RMI’s Remote interface defines remote methods;

it designates interfaces for which a proxy must be generated. Java remote methods must

throw RemoteException. RMI’s proxy generator enforces this constraint.

Unlike an RMI proxy, a MAGE proxy, in addition to remote methods, defines local

methods that bind mobility attributes to the proxy. Since having these methods throw
7To unexport itself, a mobile object must acquire its move lock.
8More empirical investigation is needed to determine whether local references are a problem in practice.



6.4. Primitives 131

Figure 6.4: MAGE Proxy Class Diagram

RemoteException does not make sense, MAGE defines them in the interface MageMobile

that does not extend Remote, as shown in Figure 6.4. MageMobile also defines a move

method, whose purpose is to provide a hook on which to bind mobility attributes to handle

system shutdowns. The idea is to make it easier for an application programmer to write

a facility that, upon receipt of a system shutdown alert, calls move on all affected mobile

objects.

In Figure 6.4, the shared application-defined interface AppIface allows client and server

to communicate, as described in the last section. AppProxy is a Java 5 dynamically generated

remote proxy that extends java.lang.reflect.Proxy, implements AppIface, and

delegates invocation handling to MageInvocationHandler.

Figure 6.4 shows where methods are declared, not necessarily defined or overridden. The

class RemoteObjectInvocationHandler defines the methods invokeObjectMethod

and invokeRemoteMethod. The former method defines some of the local method calls

declared by Object, like toString() and equals(); the latter method delegates the

remote call to UnicastRef.invoke() which marshals the call, sends it to the remote

server, and unmarshals the result. MageInvocationHandler overrides its inherited

invoke() method to invoke invokeFutureMethod when the passed method object’s
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return type is FutureMageCall or, when MageMobile declared the passed method, to

invoke invokeMageMethod, which implements bind, rebind, and unbind. The class

MageInvocationHandler also overrides its inherited invokeRemoteCall to perform

a MAGE call (Section 6.5.4) if a mobility attribute is bound to the proxy, or a standard

RMI call otherwise.

MageInvocationHandler uses its thread pool of FutureCallHandler threads to

implement futures (Section 6.3.5). When the return type of an incoming call is a descendant

of the class FutureMageCall, an instance of MageInvocationHandler invokes its

invokeFutureMethod method to handle the call. This method grabs a thread that makes

the call on behalf of the calling thread, which is free to immediately return. When the remote

call returns, the FutureCallHandler thread assigns the result, including exceptions, to

the future. The calling thread can check this future at any time to see if the call has returned,

or, when it has no further concurrent work to do, it can block on the future, as specified by

java.util.concurrent.Future<V> [70].

The cost of supporting futures in MAGE is the cost of invoking the isAssignableFrom

native method on java.lang.Class, and testing its result in a conditional.

6.5 Operations

In this section, we discuss the implementation of each of the classes of operations that MAGE

introduces.

6.5.1 Find

Chapter 5 presents the design of MAGE’s directory service, which uses forwarding pointers.

MAGE caches a forwarding pointer to every mobile object that has ever been invoked from

or has visited a host in its MageRegistryImpl. An invoker must download a proxy for

a mobile object on which it wishes to invoke operations from that mobile object’s origin

server. When the proxy is unmarshaled, MAGE extracts the mobile object’s identifier and

adds an entry to the cache that points to the mobile object’s origin server. When a mobile
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object arrives at a host and is locally exported to receive remote calls, MAGE either adds or

overwrites its entry with a self-loop, a forwarding pointer to the local host. When a mobile

object departs, MAGE overwrites the mobile object’s entry in MageRegistryImpl with a

pointer to the mobile object’s destination host.

The MageRegistryServer class, the local component of the MAGE registry (Sec-

tion 6.3), implements a find method that straightforwardly walks the chain of forward-

ing pointers. The MageRegistryServer first looks up the target mobile object’s last

known location in the local MageRegistryImpl cache, then contacts that location’s

MageRegistryImpl. Each queried instance of MageRegistryImpl either replies with a

forwarding pointer to the next MageRegistryImpl instance in the chain or signals that

the target component is collocated with it by replying with its own location.

6.5.2 Bind

Mobility attributes bind to proxies to allow different invokers to apply different migration

policies to a single mobile object. Mobility attributes also directly bind to mobile object

to impose a shared policy on all invokers. Bound attributes decide where invocations on a

mobile object should occur.

As noted in Section 6.4 on MAGE proxies, MageInvocationHandler implements

client-side mobility attribute binding with a mobility attribute field and a accesser, mutator

pair. Component mobility attributes are similarly implemented, but by the base class of all

mobile classes in MAGE, MageMobileObject. As is convention in the Java JDK, bind

throws AlreadyBoundException when a binding already exists. To overwrite a binding,

the programmer must first call unbind, then bind or use rebind.

6.5.3 Mobility Attribute Operators

Mobility attributes define two sets, a set of valid locations at which to receive an invocation

and a set of execution targets. Mobility attribute operators apply set operations, such as

union, to these sets. Mobility attribute operators augment the set operations with LEFT



6.5. Operations 134

Listing 6.2: starts

1 public Set<String> starts(Method m) throws StartException {
2 return apply(opS,left.starts(m),right.starts(m));
3 }

and RIGHT binary operators that just return the named operand (Section 3.5 introduces

these operators).

The MobilityAttribute base class implements mobility attribute operators. It

contains fields to store operands and the S and T operators over those operands. As

Listing 6.2 illustrates, MobilityAttribute’s default implementations of the starts

method recurses into the operands. The targets method differs from the starts method

in Listing 6.2 only in that it passes opT to apply. The apply method performs the specified

operation. Essentially, apply is a switch statement over the set of operators. Complement

is defined against a universe. Thus, each MAGE server must maintain a set of all MAGE

servers, which apply uses to implement complement. Currently, this list statically defined

in a configuration file read when each server starts.

6.5.4 Invocation

This section describes the implementation of an invocation on a mobile object in MAGE.

MAGE augments the RMI invocation protocol in three ways:

1. It adds new messages, notably MageCall and the accompanying MAGE invocation;

2. It handles the movement of a mobile object in the presence of concurrent invocations;

and

3. It supports the indirect return of results through a listener.

We begin with the format of the network messages. We then turn to invocation sequence

diagram, which we use to frame the discussion of tasks assigned to the various classes that

generate and handle the messages used. On the client, the bulk of the implementation resides

in MageInvocationHandler and UnicastRef; on the server, in TCPTransport and
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its parent Transport. We described MageInvocationHandler above (Section 6.4.2).

In UnicastRef, the method mageInvoke loops over finding the mobile object, then

attempts to make the invocation. If either the find or the invocation fails, because the object

moves, mageInvoke restarts the loop, until a configurable starvation bound is exceeded.

TCPTransport recognizes MageCall and hands off the stream to serviceMageCall

in Transport. This method unmarshals the header of the incoming MAGE invocation,

unmarshals and exports the mobile object if it is in the invocation stream, then applies the

component mobility attribute if one is bound. Finally, serviceMageCall either dispatches

the invocation or unexports and forwards the mobile object to its execution target. We

close with a discussion of the algorithms to realize movement in the presence of concurrent

invocations. The listener portion of the protocol was previously discussed in Section 6.3.5.

The most notable implementation challenges are:

1. Java objects cannot move without their classes, which may not be defined

in the destination JVM;

2. Mobility in the presence of n simultaneous invocations; and

3. Component mobility attributes must be efficiently applied.

The limitations of the current implementation include

1. MAGE abuses exceptions to restart its invocation protocol and wastefully

re-marshals the call at each restart;

2. Direct local calls on a mobile object are invisible to MAGE, so MAGE can

move an object that contains running threads; and

3. Self-moves, moves triggered by a mobile object calling a mobility attribute

mediated operation on itself, are restricted to void methods that lack in-out

parameters.
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Figure 6.6: Invocation Formats

Message Formats

Java’s RMI can run over various protocols, notably tunneled within HTTP and directly on

TCP/IP. Figure 6.5 depicts the format of RMI’s transport header9. The Protocol field is

one of SingleOp, Stream, or Multiplex. The Transport Operation field is one of

Call, DGCAck, or Ping. The latter two operations are used by Java’s distributed garbage

collection service. The bracketed fields — Client Host and Client Port — are not sent

when the protocol is SingleOp. MAGE uses Java’s JRMI header unchanged, but adds

MageCall as an additional transport operation.
9Based on the content of RMI’s “transport” header, it would have been better called a session header in

terms of the OSI model.
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Figure 6.6 presents the format of the invocation messages that RMI and MAGE use.

MAGE adds four fields to the RMI invocation message — Targets, Call Tag, Result To,

and Mobile Object. The targets field stores the client’s target set created when the client

applied its mobility attribute. Component mobility attributes (CMA), which bind mobility

attributes directly to the component, uses the targets field as an input to the application of

the component mobility attribute. The MAGE listener service requires the “Call Tag” and

“Result To” fields. After the call executes on a server, that server uses the “Result To” field

to determine where to route the result. The listener collocated with the invoker uses the

call tag to route the result to the invoking thread. Finally, the mobile object field stores a

marshaled representation of the target mobile object itself.

Figure 6.6a and Figure 6.6b are separated into three parts according to which class

processes the relevant fields. From the right, in package magesun.rmi.transport,

tcp.TCPTransport handles the JRMI header in both RMI and MAGE. Transport

handles the Object ID field which identifies the remote, or mobile, object on the receiving

server. When receiving a MAGE call, it also handles the additional MAGE fields. Finally,

in package magesun.rmi.server, the methods dispatch and mageDispatch of class

UnicastServerRef determine which stub type to use, then use the operation field as a

key into their hash table of remote methods.

RMI’s custom call data field allows an application to add custom call data to its

invocations. To add custom call data, the programmer must override UnicastRef’s

marshalCustomCallData method; to restore that data at the server, the program-

mer must concomitantly override unmarshallCustomCallData in UnicastServerRef.

MAGE does not use this field because it is accessed too late in the processing of an invoca-

tion. In particular, the mobile object, if sent, must be instantiated and exported before it

can receive calls. The custom call data field is not processed until after the call has been

dispatched, at which point it is too late to export the target mobile object. It is also more

efficient to handle the MAGE fields as early as possible when processing a call.

All marshaled objects, in particular those in the parameter and mobile object fields, are

annotated with the URL of the invoker’s classserver. If a class is not defined locally,
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Figure 6.7: Invocation Return Formats

then URLClassLoader uses this annotation to contact the invoker’s classserver to

acquire the requisite class definitions, as described in Section 6.3.3.

Figure 6.7 depicts the formats of the RMI and MAGE invocation returns. A MAGE

listener uses the call tag field to either notify a sleeping invoker or to place the result where

the invoker can retrieve it.

Invocation Sequence Diagram

Figure 6.8 contains the sequence diagram for the invocation phase of the FI, the MAGE

invocation protocol. From left to right in synopsis, the client a invokes its target mobile

object o found at the server s ∈ S, the set of valid starting locations. The server s then

unexports o, adds it to the invocation, and forwards both to the target server t ∈ T , the

set of target execution hosts. The server t unmarshals the mobile object and exports it,

before dispatching the call to it. The chain of local calls on t that eventually reaches

MageMobileObject, the ancestor of all mobile objects in MAGE, represents this sequence

of events.

From left to right in detail, the ApplicationClass contains the running code that invokes

a method on the mobile object o by invoking a method of the desired name on Proxy.

In JDK 1.5, the Proxy class is dynamically generated for classes that implement inter-

faces that are descendants of Remote. It delegates all calls to its InvocationHandler,

MageInvocationHandler, instance through the invoke method. The invoke method of

MageInvocationHandler recognizes four sorts of invocations:
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Figure 6.8: MAGE Invocation Sequence Diagram

1. Local method calls defined by Object, such as equals;

2. Local MAGE method calls, such as bind, which sets the MageInvocationHandler’s

mobility attribute field;

3. Asynchronous MAGE remote calls, if the invocation’s return type is a descendant of

FutureMageCall; and

4. Synchronous MAGE remote calls, if a mobility attribute is bound.

The local MAGE methods are documented in Section 6.5.2. Future calls, documented

in Section 6.4.2, simply use a thread pool to make synchronous MAGE remote calls.
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Algorithm 6.1 mageInvoke
Input: id,ma,mobileObject,method, parameters

1: i := 1
2: repeat
3: try
4: T := apply(s,method,ma) // Algorithm 6.2
5: return executeCall(id, T,mobileObject,method,parameters) // Algorithm 6.3
6: catch NoSuchObjectException, MovingException
7: s := find(id)
8: i := i+ 1
9: until i > starvation bound

10: throw CallStarvationException

Algorithm 6.2 apply
Input: s,ma,method
Require: ma 6= NULL

1: S := ma.starts(method)
2: if s /∈ S then
3: throw StartException
4: T := ma.targets(method)
5: if T = ∅ then
6: throw TargetException
7: return T

UnicastRef’s mageInvoke method handles synchronous MAGE remote calls. This

method wraps its call to executeCall in a loop and a try-catch block that restarts the

call, subject to MAGE’s starvation constraint, in the event that the target mobile object

moves before the call succeeds.

Algorithm 6.1 depicts mageInvoke’s pseudocode. It optimistically assumes that the

mobile object has not moved, and applies the mobility attribute ma by calling apply on

line 4. In Algorithm 6.2, the apply method first checks that s ∈ S, then generates T . If

the execution fails, Algorithm 6.1 follows the chain of forwarding pointers (the find phase of

FI) to locate the target mobile object o on line 7. Each time mageInvoke must find the

mobile object, it reapplies the mobile attribute.

Algorithm 6.3, implemented in StreamRemoteCall, actually sends the call and waits

for a reply. It first acquires a call tag from its listener, then marshals the call, before

blocking on listener’s getReturn on line 5. When it receives an invocation return, the listener
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Algorithm 6.3 executeCall
Input: id, T,method, parameters
Require: listener 6= NULL

1: tag := listener.getTag()
2: resultTo := localhost
3: i := marshal(id, T , tag, resultTo, mobileObject, method, parameters)
4: send i to s
5: result,resultFrom := listener.getReturn(tag)
6: forwarding pointer := resultFrom
7: return result

unmarshals the result, then returns from getReturn to awaken the invoking thread. If the

result is an exception, it percolates up to the invoker. Otherwise, on line 6 executeCall

updates its forwarding pointer, which is realized as a LiveRef instance that contains the

IP address and port of o’s new location, thus collapsing the invoker’s chain of forwarding

pointers.

Algorithm 6.1 appears to be vulnerable to a time-of-check, time-of-use (TOCTOU) race:

the target mobile object o could move before the invocation reaches it. However, this race

is not actually a problem: if o moves, it will not be at the server s when the invocation

arrives and s will either throw a NoSuchObjectException or MovingException to the

invoker. When mageInvoke catches either of these exceptions, it restarts the invocation

subject to the starvation bound.

At server s, an instance of TCPTransport listens for incoming invocations. When it

receives a message, it processes the JRMI header, and identifies the message as a MAGE

invocation, it calls its serviceMageCall in its superclass Transport. Algorithm 6.4

depicts serviceMageCall. On line 1, s extracts the named data from the invocation i.

Then s checks whether i contains the mobile object o.

In the scenario of Figure 6.8, o is not in i, so s checks whether o is local on line 3. If o is

not local, then either there was an error, or o moved before the i reached s and the invoker

must re-find o. On line 7, s throws NoSuchObjectException to report this case to the

invoker. In scenario of Figure 6.8, o is on s, so serviceMageCall looks o up on line 4 and

records that it did so by setting newlyArrived to false on line 5. Then serviceMageCall
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Algorithm 6.4 serviceMageCall
Require: ¬(o ∈ i ∧ isLocal(o))
Input: i // An incoming invocation
1: id, T, o, resultTo, tag = i.unmarshal()
2: if o = null then
3: if isLocal(id) then
4: o := lookup(id)
5: newlyArrived := false
6: else
7: throw NoSuchObjectException
8: else
9: export id, o with mlock = 0 and call count = 1 // after export, isLocal(id) = true

10: newlyArrived := true
11: T := applyCMA(o, T ) // Algorithm 6.5
12: if self /∈ T then // Forward the invocation.
13: atomic
14: if o.immobilizations > 0 then
15: throw ImmobilizedException
16: if o.mlock = 1 then
17: throw MovingException
18: o.mlock := 1
19: if newlyArrived then
20: o’s call count := o’s call count - 1
21: block until o’s call count = 0
22: unexport id, o
23: send id,null, o, resultTo, tag, i to t ∈ T
24: return
25: else
26: atomic
27: if o.mlock = 1 then
28: throw MovingException
29: if ¬newlyArrived then
30: increment o’s call count
31: method,parameters = i.unmarshal()
32: result = dispatch(o,method, parameters)
33: atomic
34: decrement o’s call count
35: send tag, result to resultTo

calls applyCMA to apply o’s component mobility attribute, if one is bound, on line 11.

Algorithm 6.5 captures the behavior of applyCMA in pseudocode.

The call count of o tracks the number of threads executing in o. On line 12, s checks

whether it is itself an acceptable execution target. If it were, s would atomically check

whether there was a waiting mover and increment o’s call count on lines 26–30, before

executing the invocation, lines 31–35.

We are considering the case in which s forwards o, which it accomplishes on lines 13–24.
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Algorithm 6.5 applyCMA
Require: o 6= null ∧ o.m 6= null =⇒ o.Op 6= null
Input: o, T ⊆ H

1: if o.m 6= null then
2: Tc := o.m.targets()
3: T := T o.Op Tc
4: if T = ∅ then
5: throw TargetException
6: return T

The server s first checks whether o has been immobilized. Then it attempts to acquire o’s

move lock to prevent any new threads from entering o by causing attempts to increment

o’s call count to throw MovingException on line 28. After setting o.mlock, s waits for

the threads already in o to drain at line 21. There can only be one mover at time, so after

a thread has acquired a mobile object’s mlock, subsequent attempts to acquire it throw

MovingException on line 17. Note that the move lock is needed only for side-effects

confined to the mobile object itself, since other side-effects written by a thread running in

the context of a dead clone will not be lost.

Server t’s TCPTransport instance also uses serviceMageCall to handle the incoming

invocation. This time the mobile object is in the invocation stream, so t exports o on line 9.

This export atomically sets o’s mlock to 0 and increments its call count to prevent the mover

from starving as could occur if another thread moved o before the client a could execute its

method on lines 31–35.

The method mageDispatch in UnicastServerRef implements dispatch on line 32.

The method mageDispatch calls the method named by the invocation o via Java’s reflection

facility. It differs from it RMI progenitor in that it must handle both direct and indirect,

listener mediated returns. In Figure 6.8, the invocation is eventually dispatched on the

application’s mobile object, which MageMobileObject, the ancestor of all mobile object

classes, represents.

When more than one invocation for the same object arrives simultaneously, one of the

invocations will win the race to lock the object on line 13. Whichever does will unexport

the mobile object and move it. Each loser will report a NoSuchObjectException back
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to its invoker.

A MAGE mobile object cannot move while it is has in-flight invocations that threads

executing within it sent. MAGE derives this limitation from Java’s weak mobility support:

Java does not support thread migration. If it did, the MAGE listener could forward the

results of in-flight invocations. So long as all calls made on a mobile object are proxy-

mediated remote calls, the object’s call count will be nonzero and will prevent that object

from moving until all in-flight invocations return and the call count goes to zero, as described

in Algorithm 6.4.

Direct, local, non-proxy-mediated calls on a mobile object are a problem, as described in

Section 6.4.1. The problem occurs because a thread can hold a direct reference to a mobile

object and thereby prevent the copy left behind after the object moves from being reaped.

These calls do not increment the object’s call count. Just as with the garbage collection

problem, MAGE relies on convention to mitigate this problem: programmers must avoid

local calls on mobile object and restrict themselves to proxy-mediated calls.

A MAGE mobile object moves itself by calling one of its own methods via a proxy whose

mobility attribute picks a target set that does not include the current host. The invoking

thread makes its call as usual and blocks in the listener. The host to which the object moves

executes the call as usual, and forwards the result to the old host’s listener. The problem is

writes to fields in the dead clone. Any such writes must be forwarded to the mobile object’s

new host. When the method is void, side-effect free, and lacks in-out parameters, there is no

problem: the invoking thread does not write to fields in the dead clone. The invoking thread

can, of course, write to any other location in the application, such as a different mobile

object.

When a mobile object moves, MAGE sets its moved field to true to marshal the mobile

object itself and not a proxy to the mobile object, as occurs when the mobile object appears

in a parameter list. The invoking thread could check this field, realize that the mobile

object has moved and call a “fix-up” method on its proxy defined by MageMobileObject

to forward the result to the mobile object. Of course, the result may not change the mobile

object’s state, in which case it can be dropped, or it may simply return to the remote invoker
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that invoked the thread that caused the mobile object to move, in which case nothing special

need be done. At present, MAGE relies on the programmer to restrict herself to self-moves

triggered only by calls to void methods that lack in-out parameters.

6.6 Limitations

The current implementation of MAGE, like all implementations, is not ideal. Since MAGE

was implemented, Java added its JMX API for management services [68] that obviates the

MAGE resource manager. MAGE would better integrate with the Java ecosystem if it

replaced its resource manager with one based on JMX.

MAGE’s class server runs on its own port, rather than sharing a port with a single

listener that multiplexes its messages with the other services. It should be merged with the

others. Currently, many of MAGE’s services run as RMI remote objects. MAGE’s efficiency

and scalability would be improved if they were directly integrated into MAGE framework.

MAGE relies on convention to prevent programmers from holding direct, non-proxy-

mediated references to a mobile object and making direct, local calls on it. One possible

way to enforce this convention is to require programmers to use a factory to instantiate

mobile objects. This mobile object factory would return proxies on the origin host. The

standard tactic to restrict instantiation to a factory is to make the constructor of the

produced class private. This is not feasible for MAGE, since applications need to subclass

MageMobileObject. Instead, the MAGE mobile object factory could track those objects

that it creates and MAGE could refuse to move objects that it did not create.

Each MAGE server learns about other MAGE servers statically, via a configuration file.

A dynamic broadcast mechanism for announcing new and departing MAGE servers should

be incorporated, including a heartbeat to detect servers that are silently offline.

Currently the MAGE registry has two layers — the RMI registry and a RMI Remote

object that implements the MAGE registry extensions and must be downloaded from the

RMI registry. MAGE’s registry functionality should be merged into a single service.

When a mobile object moves before an invocation reaches it, Algorithm 6.1 catches the



6.7. Summary 146

resulting exception, restarts the invocation protocol, and wastefully re-marshals the call.

Further, its implementation abuses Java’s exception handling mechanism to signal re-starting

the invocation rather than an error [88]. A better solution would be to handle the problem

at a lower level via a return type, not an exception, and avoid the redundant work.

6.7 Summary

In this chapter, we have described the implementation of MAGE. We compared the MAGE

runtime to the RMI runtime, which MAGE extends. We described the implementation

of MAGE’s three primitives, followed by the operations that MAGE allows over those

primitives.
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Chapter 7

Evaluation

True genius resides in the capacity for evaluation of uncertain, hazardous, and conflicting

information.

Winston Churchill, 1874–1965

For mobility attributes to be at all practical, they must not impose too much overhead

upon their user. In this chapter, we present two sets of benchmarks that compare MAGE

against RMI:

1. micro-benchmarks that capture the invocation overhead of classic distributed program-

ming paradigms realized as mobility attributes; and

2. a benchmark that quantifies the MAGE’s marshaling overhead.

In Section 7.2, we present a novel variant of dining philosophers in which philosophers

must eat and exploit mobility to satisfy their hunger. We describe a MAGE-based solution to

this problem, which models philosophers as active mobile objects contending over chopsticks,

also modeled as mobile objects. Activity and chopstick contention make this application a

particularly demanding test of the robustness of the MAGE framework. We then describe

and evaluate various different migration policies that philosophers can use to acquire food.

Connected via standard 100Mb Ethernet, our experimental testbed is heterogeneous,

consisting of three machines: 1. a dual-processor Intel 500 MHz Pentium III with 512MB of
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RAM, 2. a dual-processor Intel 2.80 GHz Pentium 4 with 1GB of RAM, and 3. an Intel Xeon

2.80 GHz with 2GB of RAM. Each machine runs Linux 2.6.20. We use Sun’s JDK 1.5.0 07.

7.1 Baseline Measurements

The contributions of MAGE include a rich set of expressions for defining arbitrary mobile

object and invocation placement policies, isolating those policies, and composing those

policies (Section 1.3). The expressivity and separation of concerns MAGE offers is not free.

These measurements quantify the overhead of the MAGE programming model. We present

two sets of benchmarks here — micro-benchmarks of distributed invocations of passive

objects and a marshaling benchmark.

We do not compare MAGE to mobile programming languages, such as Telescript [108] or

D’Agent [36], here because, unlike MAGE, they make no attempt to isolate layout decisions.

Their relationship to MAGE is analogous to that of assembly language to a 3rd generation

language: They are lower-level and thus impose less execution overhead at the cost of a

higher cognitive load on the programmer when writing and maintaining code.

No standard benchmarks or test suite exists for the programming models most closely

related to MAGE (Chapter 8). Indeed, the related work all concentrates on illustrating their

programming model using code snippets drawn from toy applications. Only SATIN [123]

reports any quantitative measurements at all — the SLOC and bytes of the SATIN

implementation and various applications, the times of micro-operations of launching a “Hello,

world!” application on two machines, and the time to send and deploy an Ogg Vorbis codec.

The SATIN authors offer no baseline against which to compare these numbers.

We begin with invocation micro-benchmarks because other costs will be either amortized

over the life of an application (i.e. class-loading) or are specific to a particular application

or environment, such as the cost of a policy that collocates an object with a resource like

a printer or a database. Thus, rather than try to measure the cost of all the functionality

MAGE can provide, we measure the overhead it imposes when it realizes RMC and the
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classic invocation paradigms — RPC, COD, and REV1. Our goal is to demonstrate that

MAGE’s qualitative benefits do not come at too high a quantitative price. We include

Java RMI in the invocation benchmarks as a baseline for comparison because (1) Java RMI

is a well-known, standard mechanism; (2) the difference between Java RMI and MAGE

RPC illustrates MAGE’s overhead in the absence of mobility; and (3) other researchers

can multiply these MAGE micro-benchmark results against the ratio of the performance of

Java RMI in their environment to the Java RMI performance reported here to estimate how

MAGE would perform in their environment.

The execution of a function call naturally divides into the overhead of invocation

mechanism and the work done by the call. The work a call does is application specific and

can take arbitrary time. Here, we seek to measure the overhead of the MAGE invocation

mechanism. Thus, the invocation micro-benchmarks do nugatory work: they increment an

integer. As a result, they shed no light on the question of whether the overhead of the MAGE

invocation mechanism is independent of and constant in the presence of work. Marshalling

return values is an easily duplicated and calibrated proxy for work. Thus, Section 7.1.2

uses marshaling of increasingly large return values to show that, while MAGE’s overhead

is not constant, it is a declining fraction of the total cost of an invocation as the work per

invocation increases.

7.1.1 Invocation Micro-Benchmarks

MAGE adds three principal sources of overhead to a Java RMI invocation: the time needed

to

1. evaluate the mobility attributes bound to an invoker’s proxy and directly to the

mobility attribute itself;

2. marshal the fields MAGE has added to the invocation message; and

3. manage mobility — specifically, a) move a mobile object, b) handle the possibility that
1These models were introduced and described in Chapter 3.
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Listing 7.1: Invocation Measurement Test Class

1 package paradigm;
2
3 import player.Ball;
4 import mage.rmi.RemoteException;
5
6 public class BallImpl extends MageMobileObject implements Ball
7 {
8 private static final long serialVersionUID = 1L;
9 protected int cnt;

10
11 public BallImpl() throws RemoteException {
12 cnt = 0;
13 }
14
15 public void incr() throws RemoteException {
16 ++cnt;
17 return;
18 }
19 }

the target mobile object has moved since the invocation was sent, c) collect garbage,

and d) return routing via the MAGE listener.

Item 1 — the time to evaluate a mobility attribute — can take arbitrary time, especially

when that mobility attribute interacts with its environment via the resource manager. Thus,

we employ the attributes tailored for each invocation paradigm. To minimize the cost of

mobility, we statically deploy the test class. Since we do not need to bind mobility attributes

directly to mobile object to model the above invocation paradigms, we do not bind mobility

attributes directly to mobile objects. To avoid the overhead associated with items 3b and

3c, we restrict ourselves to single-threaded benchmarks, and we do not run the experiments

long enough to evaluate the impact of garbage collection under MAGE.

Listing 7.1 contains the mobile test class, BallImpl. Because our focus is the cost the

MAGE invocation infrastructure, this class does almost no work: it has a single integer

attribute, which it increments.
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Cold Warm
Invocation Invocation Invocation
Paradigm Time (ms) Time(ms)
JAVA RMI 2.03 1.28
MAGE RPC 12.69 3.33
COD 123.32 10.30
REV 124.27 12.37
RMC 150.45 13.35

Table 7.1: Invocation Measurements

For COD, an instance BallImpl migrates to the invoker’s host. Once a test object

arrives, the incr method is invoked and the results are returned to the invoker via the

listener. For REV, we do the reverse. A local instance of BallImpl migrates to the remote

host by instantiating a new clone at the remote host and discarding the old clone at the

local host. The result is sent back to the local host. RMC is similar to REV except that the

test object starts out and remains remote.

The measurements are contained in Table 7.1. We give cold and warm invocation times

in the second and third columns, respectively. The reported numbers for both are an average

of 10 runs. For cold, each run sets up a fresh server, downloads a fresh proxy, then times a

single invocation. Thus, the cold invocation times show the one-time startup cost of priming

the MAGE engine — loading the CPU and disk caches with relevant code and data as well

as the cost of starting a connection thread that unmarshals and dispatches the invocation

on the server. For the mobile paradigms, the startup cost to move the definition of the

BallImpl to the target execution JVM dominates the total mean time.

The warm benchmarks set up the server, download a proxy, and make an initial call

whose time-to-completion is ignored, before timing 10 consecutive calls. Dropping the first

call approximates amortizing its cost without requiring a large number of runs. Thus, the

warm times give a more accurate representation that MAGE applications will experience.

Further, it is much easier to gather statistically significant data from long running servers.

For these reasons, we now only discuss the amortized times.

We can see from Table 7.1 that the time reported for MAGE’s implementation of

the well-known distributed models. COD, REV, and RMC all move BallImpl prior to
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executing incr. Thus, it is not surprising that their mean total time exceeds that of MAGE

RPC, the immobile case, by an order of magnitude. COD is the fastest because its return,

although listener-mediated, uses TCP/IP loopback and is entirely local2. REV is faster

than RMC because the arriving object is registered with the target invocation server, incr

is immediately executed, and the return is directly back on the socket used to deliver the

invocation, unmediated by the MAGE invocation listener. RMC comes in last because it is

both remote and listener-mediated.

When comparing a Java RMI call against a MAGE RPC call, we see that MAGE imposes

overhead of 160% on a vanilla Java RMI call. To explain this delta, I ran the Java RMI and

MAGE RPC invocation benchmarks 100, 000 instead of 10 times each and ran the YourKit

Java Profiler [121] against the results. The cost of marshaling accounts for most of this

overhead. MAGE adds four fields to the Java RMI invocation header, of which three are

non-primitive — the set of targets as an instance of Set<String>, the host to which to

route the result as a String, and the mobile object itself. At the client, a MAGE invoker

spends a factor of 3 more time than an RMI invoker to marshal an invocation. The MAGE

server, however, spends still more time and is the bottleneck: the MAGE server spends a

factor of 4 more time waiting to unmarshal and unmarshaling the invocation than the RMI

server, slightly more than 1
2 its total time. MAGE RPC’s mean time-to-completion is 260%

that of Java RMI. Thus, 3
4 of 1

2 or 3
8(260% = 13

5 ) = 39
40 = 97.5% is unmarshaling overhead

at the server. As a fraction of total overhead, 97.5%
160% = 61% accounts for the majority of

MAGE’s overhead. Evidently, MAGE’s implementation could benefit from the same sort

of optimizations that have been proposed for RMI, in particular marshaling libraries that

cache marshaled objects [74, 55].

Of the remaining and 160% − 97.5% = 62.5% of MAGE’s overhead, profiling reveals

that MAGE pays, over and above Java RMI, for the cost of 1) string handling in the

application of mobility attributes, 2) ensuring that sockets acquired from the socket pool

are still alive by pinging the server-side, and 3) working around Java’s partitioning of the
2MAGE could decrease this cost still further by optimizing for collocation as proposed at the close of

Section 6.1.
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table in which it stores server objects that remote clients can invoke (ObjectTable). For

item 2, MAGE clients spend 1
40 of the mean total time waiting for replies to their ping vs 0,

i.e. unmeasurable noise, under Java RMI. Prior to Java 5, the ObjectTable was global

within a JVM. With Java 5, Sun partitioned remote objects by invocation listener port, so

that the clients of one listener could not invoke operations on remote objects exported at

another listener within the same JVM. A mobile object may create a new invocation listener

when it arrives at a server whose port is unknown to the proxies of existing clients. To work

around this issue, MAGE searches the object table globally, at measurable cost.

Like almost all code, MAGE would obviously benefit from optimization. For instance,

the set of hosts is likely to change slowly and predictably enough to be represented with

bit strings. The current implementation focuses on being robust and maintainable. It has

been written with a eye to Knuth’s dictum — “We should forget about small efficiencies, say

about 97% of the time: premature optimization is the root of all evil.” [51] — perhaps with

too generous an estimation of what constitutes a “small efficiency.”

7.1.2 Overhead in the Presence of Work

Is the invocation overhead MAGE imposes independent of the work done by an invocation?

The next benchmark seeks to shed light on this question. Marshaling is a simple example of

generic work. Moreover, MAGE is built on top of Java RMI, so it uses the same marshaling

library as RMI — java.io.Serializable.

Figure 7.1 shows how MAGE’s overhead declines as the marshaling cost of a call increases.

In this experiment, we return an increasingly large ArrayList whose elements are instances

of a class that consists of four strings whose length is normally distributed about 40 characters,

two java.util.Date instances, a long, an int, a double and a float3.

If the MAGE overhead were independent of the work an invocation does, it would take

a fixed amount of time and thus be a fast decreasing fraction of the time-to-completion of

a MAGE invocation as the size of the returned ArrayList increases. Table 7.2 records
3This benchmark was inspired by a similar benchmark posted at http://daniel.gredler.net/2008/

01/07/java-remoting-protocol-benchmarks/.

http://daniel.gredler.net/2008/01/07/java-remoting-protocol-benchmarks/
http://daniel.gredler.net/2008/01/07/java-remoting-protocol-benchmarks/


7.1. Baseline Measurements 154

25 50 100 150 250 500 1000 2500 5000

List Size (Elements)

av
er

ag
e 

tim
e−

to
−

co
m

pl
et

io
n 

(m
s)

0
10

0
20

0
30

0
40

0

Java RMI
MAGE RPC

Figure 7.1: MAGE Marshalling Measurements

Elements µ(mage)−µ(rmi)
µ(mage)

25 0.09098111
50 0.26457409
100 0.32884892
150 0.25898509
250 0.32108809
500 0.21121683
1000 0.15482159
2500 0.14406123
5000 0.12072428

Table 7.2: Mean MAGE Overhead Relative to RMI as Fraction of Total Time.
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the mean overhead of MAGE relative to RMI as a fraction of MAGE’s mean total time.

As Table 7.2 makes clear, the MAGE overhead is not fixed, so it is not independent of the

marshaling work. It is, however, a decreasing fraction of the total time.

7.2 Peripatetic Dining Philosophers

To exercise the MAGE framework and to illustrate the flexibility and concision of the

migration policies it can express, we define “peripatetic dining philosophers,” a novel variant

of the dining philosopher’s problem that requires mobility. We describe the implementation

of our solution, which requires active mobile objects. We then present and compare a variety

of migration policies, against both a fixed and changing backdrop of resource production.

Definition 7.2.1 (Dining Philosophers [25, 17]). Around a circular table, n philosophers

rest, eat, and think. Each philosopher needs 2 chopsticks to eat, but there are only n

chopsticks, one between each pair of philosophers. The dining philosophers problem is to

devise an algorithm that the philosophers can follow that is

1. deterministic;

2. concurrent;

3. deadlock and livelock free;

4. fair;

5. bounded; and

6. economical.

Remark. “Bounded” means that both the number and size of messages in transit is finite;

economical means that a philosopher sends a finite number of messages in each state —

resting, eating or thinking.

We can capture the arrangement of philosophers and chopsticks in a ring. Figure 7.2

depicts the minimal ring.
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Figure 7.2: Minimal Dining Philosopher Ring

The dining philosophers problem models resource allocation in the presence of cycles in the

resource graph: its philosophers are agents that require forks, a set of shared resources, whose

cardinality is classically but not necessarily two. It does not model resource consumption.

What if philosophers actually needed to consume food in order to think? What if one

fork were a streaming data source, like traffic crossing a backbone router, the other fork

were an encrypted channel to the NSA, and the philosopher’s food was the CPU required

to forward a filtered version of the stream? In terms of the metaphor, we can replace the

table around which the philosophers are seated with a set of cafés. In this new problem,

philosophers may wish to move from one café to another, depending on food availability.

Definition 7.2.2 (Peripatetic Dining Philosophers). The peripatetic dining philosophers

problem is to satisfy the constraints of the dining philosopher problem, then maximize work

per unit time, subject to the following rules:

1. Cafés produce food;

2. Philosophers must eat x servings before they can think, for x ∈ N;

3. Both philosophers and chopsticks can move from one café to another; and

4. To eat, a philosopher and his chopsticks must share a café.

Remark. In contrast with the Evolving Philosopher Problem [53], the ring in which philoso-

phers and chopsticks alternate does not change under peripatetic dining philosophers.

Maximizing work per unit time entails optimizing the layout of philosophers onto cafés,

viz. finding an optimal migration strategy.
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A philosopher can only work (think), i.e. perform filtering for the NSA as described

above, when it has the requisite resources, viz. forks. Thus, we use the count of the number

of times a philosopher enters its think phase as a proxy for the work it does.

Time-to-completion t, work per unit time w, and total work are related as follows:

wt = W (7.1)

Thus, given a time budget t, maximizing w maximizes total work W ; given work to do

W , maximizing w minimizes time-to-completion t.

By extending dining philosophers to model resource consumption, peripatetic dining

philosophers marries dining philosophers to the producer-consumer problem in the context

of code mobility. Philosophers can now differ in their appetites; that is, how much food

they consume when they are hungry. Cafés can produce food at different rates. When the

demand for food at a particular café is too great, a philosopher has a reason to move to

another café.

Peripatetic dining philosophers defines a family of problems. Two vectors parameterize

this family for each café; one contains food production rates, the other starting amounts of

food. Four vectors characterize each philosopher: one for consumption rates, starting café,

time required for thinking, and the number of servings needed to sate the philosopher. The

cost to move a chopstick and the cost to move a philosopher define two more dimensions.

Finally, another group of problems is formed by producing each of these vectors with a

possibly stochastic function.

In this chapter, we restrict ourselves to problem instances in which the vector of starting

amount of food at each café is all zero and the philosopher consumption rate, time-to-think,

and servings-to-sate vectors are all one.

Under peripatetic dining philosophers, the philosopher ring is mapped onto the set of

cafés. Those mappings differ in terms of the number of neighboring philosophers in the ring

that share a café. When two philosophers who share a chopstick in the ring share a café,
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their chopstick can remain at that café. When neighboring philosophers are at different

café’s, they must send their shared chopstick back and forth between the two cafés. Clearly,

chopstick acquisition is more expensive when the philosophers that share a chopstick are not

collocated. Thus, any philosopher migration policy should seek to collocate philosophers

that share a chopstick.

Dining philosophers is a generic and abstract problem that elucidates problems that arise

when attempting to realize mutual exclusion. Systems composed of mobile objects also need

mutual exclusion, so peripatetic dining philosophers is well-motivated. However, peripatetic

dining philosophers does appear to strain the metaphor — why would anyone send chopsticks

back and forth between two cafés? — until one asks why would anyone share chopsticks

in the dining philosopher problem? In future work, we intend to consider modifying the

dining philosopher ring by chopstick exchange to minimize chopstick movement as a way to

minimize time-to-completion.

Example

Imagine that the two philosophers in Figure 7.2 have access to two cafés, A and B. Both

café’s start with 0 servings. A produces 1 serving/s, while B produces 2 servings/s. The

two philosophers must each think, and therefore eat, 10 times. Both eat 2 serving/s.

If the philosophers start and remain at A, they will complete their work in 20s and 40

servings will go to waste at B. If the philosophers start and remain at B, they will complete

their work in 10s and 10 servings will go to waste at A. Since the philosophers do not move,

neither do their chopsticks.

In practice, the cost of chopstick and philosopher movement is greater than zero. As-

suming movement were free, however, the philosophers minimize their collective time-to-

completion when they dine at separate cafés. If one philosopher starts and remains at A

and the other at B, then the philosopher at B will finish in 5s, while the philosopher at A

finishes at 10s. Café B continued to produce food while the philosopher at A waited for

food, so 10 servings are wasted.

Collectively, the philosophers require 20 servings. The two café’s produce 21 servings in
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Figure 7.3: The Layout Problem

7s, which bounds time-to-completion from below. After the philosopher at B completes its

work in 5 seconds, the philosopher at A still need to eat 5 servings. If it remains at A, sating

its hunger will take an addition 5s, as in the scenario above. If it moves to B, it can sate its

hunger in 3s. Under this migration strategy, the time-to-completion is 8s and 4 servings are

wasted.

Of course, when the production rate of the cafés is fixed, as in this example, mobility

reduces to optimal deployment, with some latency for discovering the café production rates.

Mobility and migration policies become essential when café production rates change over

time. Next, we use MAGE to empirically investigate the peripatetic dining philosophers

problem, using different migration policies.

7.2.1 A MAGE Implementation

The peripatetic dining philosopher problem boils down the layout problem for which MAGE

was designed: an optimal layout of philosophers maximizes work per unit time.

The MAGE implementation runs six philosophers. Figure 7.3a depicts the standard

dining philosopher ring for six philosophers. The philosophers all request the chopstick to

their right, then left, except p5 who breaks the symmetry by requesting the chopstick to his

left, c0, before c5. Each philosopher must eat 1 meal each time they are hungry. Figure 7.3b

depicts the cafés, each labeled with their rate of food production. Note that each second,
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Listing 7.2: PhilosopherImpl: State Loop in run()

1 for (; count < rounds && ! moved; count++) {
2 try {
3 switch(state) {
4 case HUNGRY:
5 self.eat();
6 state = State.THINKING;
7 break;
8 case THINKING:
9 self.think();

10 state = State.SLEEPING;
11 break;
12 case SLEEPING:
13 self.sleep();
14 state = State.HUNGRY;
15 break;
16 }
17 } catch (RemoteException e) { /* Elided for brevity. */ }
18 }

the cafés collectively produce enough food to sate all six philosophers, assuming the number

of philosophers at each café matches the café’s production rate.

In Listing 7.2, rounds and count are integers; self is a MAGE proxy to an in-

stance of PhilosopherImp; and moved is a boolean, whose purpose is explained below.

PhilosopherImpl’s constructor initializes each of these variables and binds a mobility

attribute to eat(). When a philosophers calls its eat(), the mobility attribute bound to

it decides at which café that philosopher should eat. In Sections 7.2.3 and 7.2.4, we describe

and analyze the performance of various migration policies, realized as mobility attributes

that we bind to eat().

With the exception of moved, Listing 7.2 is a standard realization of the state loop in

a classic formulation of dining philosophers. Here, the philosopher transitions between its

three states of hungry, thinking, and sleeping until the count of those transitions exceeds

rounds.

In MAGE, when the mobile object o moves from host s to host t, o is first cloned, then

the new clone is marshaled and sent to t. The new clone at t executes the call that triggered
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Listing 7.3: eat()

1 public void eat() throws RemoteException {
2 if (justArrived) // check whether to restart.
3 uponArrival();
4 else {
5 // The asymmetric philosopher’s first and second
6 // chopsticks are switched.
7 getChopstick(first);
8 getChopstick(second);
9 int j = 0;

10 for (; j < helpings;) {
11 j += cafe.fillPlate(helpings - j); //blocks if no food
12 }
13 first.put(id);
14 second.put(id);
15 }
16 }

o to move and becomes the current version of o. MAGE discards the old clone that remains

at s. MageMobileObject defines moved. It is initially false, but is set to true in the

old clone when the new clone of a mobile object is sent to another host. Thus, moved

distinguishes the old and new clones of a mobile object. In Listing 7.2, moved set to true

causes the thread running in an old clone to exit the state loop and terminate.

Philosophers are active objects that move themselves. As we have noted, Java does not

support strong mobility, so we need some way to restart a computation at the language level:

we need to define a continuation using only the heap. When an active object cycles through

a state machine encoded in a switch, we can store its current state in the heap. If each

case in the switch is side-effect free before a movement-triggering method is called, then

when we marshal, move, and unmarshal the object we can restore its state and start a new

thread that returns to the method call that triggered the active object’s movement. We must

perform bookkeeping whenever an active mobile object arrives at a new host, notably we

must start the mobile object’s thread. All movement-triggering methods must detect arrival

and perform such bookkeeping as necessary. We use these techniques to realize philosophers

as simultaneously active and mobile objects.
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When a self-invocation causes a mobile object to move, the thread running in the old

clone sleeps in the MAGE listener, as shown in Figure 7.4. Execution in the new clone sends

a return to the listener and awakens the old clone’s thread. The old clone’s thread must be

side-effect free. For this reason, a method whose self-invocation causes movement must be

void. The old clone’s thread can, of course, write to the old clone, as that clone is simply

discarded.

Listing 7.3 defines a peripatetic dining philosopher’s movement-triggering method, its

eat() method. The variables first and second are fields that contain proxies to a

philosopher’s chopsticks. In their constructors, philosophers bind these fields to CODa. The

helpings field determines how much a philosopher eats when it is hungry. It defaults to

one in the evaluations that follow. This eat() differs from its classic formulation in dining

philosophers in two ways: the if-else and its getChopstick method.

The eat() method’s if-else handles bookkeeping. When a philosopher moves and its new

clone arrives at host, readObject() in Listing 7.4 unmarshals in it and sets justArrived

to true. Thus, a movement-triggering call executes justArrived branch in the body of

eat() and chains to uponArrival() in Listing 7.5, which first clears justArrived,

performs the bookkeeping, then starts a new thread for the philosopher.
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Listing 7.4: readObject()

1 private void readObject(ObjectInputStream in)
2 throws IOException, ClassNotFoundException
3 {
4 in.defaultReadObject();
5 justArrived = true;
6 moves++;
7 }

Listing 7.5: uponArrival()

1 private void uponArrival() throws RemoteException {
2 justArrived = false;
3 try {
4 init(); // Get proxy and bind mobatt.
5 } catch (RemoteException e) { /* Elided for brevity. */ }
6
7 new Thread(this).start();
8 }

The movement-triggering call then returns and awakens the old clone’s thread, which

sets the old clone’s state to THINKING before executing the loop conditional. Since the old

clone’s moved boolean is true, it dies and the fact that it changed the old clone’s state is

irrelevant. The new clone’s thread starts out with its state set to HUNGRY, so it immediately

executes eat(). This execution applies the philosopher’s mobility attribute which could

cause the philosopher to move again, repeating this process. To prevent starvation, all the

mobility attributes in this evaluation also have a justArrived field, and return the local

host when it is true, thus allowing the philosopher to execute eat() at least once after

every move. If there is no food, the philosopher blocks in a queue until the café produces

more food.

There are two ways to immobilize a mobile object in MAGE. The first is an internal

move lock. A mover holds this lock while it waits for inplace invocations currently executing

in a mobile object to complete before it moves the object. To prevent the starvation of

movers, this move lock prevents new inplace invocations. Only a single mover can hold this

lock at a time.
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Listing 7.6: ChopstickImpl Methods

1 public synchronized void put(int id) throws RemoteException {
2 if (owner != id) {
3 return;
4 }
5 mobilize(); //allow movement
6 owner = -1;
7 notifyAll();
8 }
9

10 public synchronized void get(int id) throws RemoteException {
11 while (owner != -1)
12 try {
13 wait();
14 } catch (InterruptedException e) {}
15 immobilize(); //Prevent movement, until put() called
16 owner = id;
17 }
18
19 public synchronized void waitUntilFree() throws RemoteException
20 {
21 while (owner != -1)
22 try {
23 wait();
24 } catch (InterruptedException e) {}
25 }

The second mechanism is user-visible. Two methods defined on MageMobileObject

realise this mechanism: programmers call immobilize to lock a mobile object to its current

host and mobilize to free it. In peripetatic dining philosophers, the chopsticks represent

mobile resources that the philosophers need in order to eat. We have defined need to mean

that the chopsticks must be local when a philosopher eats, thus the binding of cod to them.

In the absence of user-controlled immobilization, while a philosopher was waiting for its

second chopstick, its first chopstick could be moved away by the philosopher that shares

that chopstick with it.

Listing 7.6 illustrates the use of these two methods. In MAGE, a mobile object moves

before the method triggering that movement executes. Thus, a philosopher does not check

whether its neighbor owns the chopstick until after the chopstick is collocated with it.
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Listing 7.7: getChopstick(Chopstick chopstick)

1 protected void getChopstick(Chopstick chopstick)
2 throws RemoteException
3 {
4 int i = 1;
5 for (; i < 100; i++) { //Tolerate acquisition race.
6 try {
7 chopstick.get(id);
8 break;
9 } catch (RemoteException e) {

10 if (e instanceof ImmobilizedException)
11 {
12 chopstick.rebind(cle);
13 chopstick.waitUntilFree();
14 chopstick.rebind(cod);
15 }
16 else
17 throw e;
18 }
19 }
20 if (i >= 100) { //Lost acquisition race too many times.
21 System.exit(1);
22 }
23 }

Both philosophers could be collocated, so the method must be synchronized. The owner

immobilizes the chopstick so that both chopsticks are local when it eats.

Listing 7.7 defines a philosopher’s getChopstick() method. This method wraps

the classical acquisition of a chopstick in both a for loop and a try-catch block. The

try-catch block handles the case where the chopstick has been immobilized. Rather than

spin, we first bind an instance of a current location evaluation mobility attribute so that we

can execute waitUntilFree() in place. When the thread waiting in waitUntilFree()

awakens, it sends a return to the thread waiting in getChopstick(), which must rebind

cod, before again making the remote call to the chopstick’s get method. The latency of

this work and the fact that the philosopher that just freed the chopstick is local to the

chopstick means that philosopher that was waiting in waitUntilFree() often loses the

race. The for loop tolerates this race.
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7.2.2 Migration Policies

To support some of the mobility attribute we describe below, our implementation of peri-

patetic dining philosophers populates the MAGE resource manager with each café’s produc-

tion rate r, number of resident philosophers, and available food m. Realized as mobility

attributes, the migration policies are

Cooperative, CooperativeLocal These two policies seek to cooperatively move the phi-

losophers to match the consumption rate of the philosophers at a café with that café’s

production rate. When |Local Philosophers| = n > r, each philosopher moves to

another café with probability n−r
n . Thus, the expected number of moves is precisely the

number of philosophers in excess of the café’s rate of production. These two attribute

differ in that Cooperative sends messages to discover a target café where r > n, while

CooperativeLocal eschews messages and randomly picks a target.

Gourmand This policy ranks the cafés and causes a philosopher to move to its highest

ranked café that has food.

Hermit This policy causes a philosopher to seek a café with the fewest other philosophers

on it.

MostFood This policy greedily moves a philosopher to the café with the most available

food.

HighestProduction This policy moves a philosopher to the café with the highest rate of

production.

RandomWaitJaunt This policy ignores 1 to 10 calls to eat() chosen uniformly at random,

before choosing a café uniformly at random.

Listings 7.8, 7.9, and 7.10 present the “MostFood” policy’s concrete implementation as a

mobility attribute.

In Listing 7.8, OneMethodMobAttA, which MostX extends, is an attribute that MAGE

provides in its ml package for use as the base class of all attributes that bind to a single
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Listing 7.8: MostX Attribute

1 package util;
2
3 import java.io.IOException;...
4
5 public class MostX extends OneMethodMobAttA {
6
7 private static final long serialVersionUID = 1L;
8 String resource;
9 private boolean justArrived;

10 protected transient ResourceManagerServer rm;
11
12 public MostX(Class iface, String method,
13 Class[] params, String resource)
14 throws SecurityException, NoSuchMethodException
15 {
16 super(iface, method, params);
17 this.resource = ":" + resource;
18 rm = ResourceManagerServer.getResourceManagerServer();
19 }
20
21 @Override public Set<String> targets()
22 throws TargetException
23 { /* See Listing 7.9 */ }
24
25 private void readObject(ObjectInputStream in)
26 throws IOException, ClassNotFoundException
27 {
28 in.defaultReadObject();
29 justArrived = true;
30 rm = ResourceManagerServer.getResourceManagerServer();
31 }
32 }

method. MostX assumes that the MAGE resource manager is populated with keys, whose

format is host:resource, mapped to float values. The X in its name abstracts the

resource name. Its rm field is a handle to the local resource manager. As such, it is transient;

whenever this attribute is unmarshaled, readObject re-initializes it.

As described above in Section 7.2.1, justArrived avoids starvation by forcing philoso-

pher to attempt to eat after each move. Set in readObject, it is checked in the targets
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Listing 7.9: MostX targets()

1 @Override public Set<String> targets() throws TargetException {
2 Set<String> ret = new HashSet<String>();
3 ret.add(MageRegistryServer.getLocalHost());
4 if ( ! justArrived) {
5 Map<String,Object> rmap = rm.getMap();
6 boolean hit = false;
7 Object value;
8 float max = Float.MIN_VALUE, current;
9 for (String key : rmap.keySet()) {

10 if (key.endsWith(resource)) {
11 hit = true;
12 value = rmap.get(key);
13 if (value == null) break; // handle startup latency
14 if (value instanceof Float)
15 current = ((Float)value).floatValue();
16 else
17 current = ((Integer)value).intValue();
18 if (current > max) {
19 max = current;
20 ret.clear();
21 ret.add(key.split(":")[0]);
22 }
23 else if (current == max)
24 ret.add(key.split(":")[0]);
25 }
26 }
27 if ( ! hit)
28 throw new TargetException(
29 "The resource " + resource.split(":")[1]
30 + " not defined."
31 );
32 }
33 else
34 justArrived = false;
35
36 return ret;
37 }
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Listing 7.10: MostFood Attribute

1 package util;
2
3 import java.util.HashSet;...
4
5 public class MostFood extends MostX {
6
7 private static final long serialVersionUID = 1L;
8 protected int interval;
9 protected long last;

10
11 public MostFood(Class iface, String method,
12 Class[] params, int interval)
13 throws SecurityException, NoSuchMethodException
14 {
15 super(iface, method, params, "food");
16 this.interval = interval;
17 last = 0;
18 }
19
20 @Override public Set<String> targets()
21 throws TargetException
22 {
23 long now = System.currentTimeMillis();
24 if (now - last > interval) {
25 last = now;
26 return super.targets();
27 }
28 else {
29 Set<String> ret = new HashSet<String>();
30 ret.add(MageRegistryServer.getLocalHost());
31 return ret;
32 }
33 }
34 }

method of MostX in Listing 7.9. When justArrived is true, targets() returns a

singleton set containing only the philosopher’s current host. Otherwise, it loops through

all keys whose suffix matches the resource field, returning the set of hosts that share a

maximum value for that resource.
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In Listing 7.10, MostFood’s targets() is quite simple and compact. It simply checks

if sufficient time, as defined by the sampling interval (ms) passed into its constructor has

elapsed. If not, it returns the singleton set of the host on which it is executing. Otherwise,

it calls the targets() method of its superclass, MostX.
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Total Physical Source Lines of Code (SLOC) = 545
Development Effort Estimate, Person-Years (Person-Months) = 0.11 (1.27)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 0.23 (2.74)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 0.46
Total Estimated Cost to Develop = $14,284
(average salary = $56,286/year, overhead = 2.40)

Table 7.3: Aggregate Policy Metrics

David A. Wheeler’s ’SLOCCount’ tool [106] generated the data in Table 7.3 and Figure 7.5.

This tool strips comments and then counts the remaining, physical, not logical, source lines

of code (SLOC). Further, we have used this tool to count each attribute’s entire class file,

not just their target methods.

COCOMO is a widely used software cost estimation model [15]. We report it here

to translate the SLOC results into dollars, a more meaningful unit of measure. Realized

as mobility attribute under MAGE, migration policies are isolated and small: developers

working on distributed systems that employ mobility are likely to save money if they use

MAGE.

Figure 7.5 presents the SLOC of the application attributes — attributes written to

realize migration policies for the peripatetic dining philosophers application — not the

attributes that MAGE provides in its ml package. Like MostX, the FewestX and NoX

classes factor code used in subsets of the policies. In particular, Hermit extends FewestX

and Gourmand delegates to a NoX instance.

These metrics demonstrate the concision of the policies that MAGE can express: MAGE

allowed us to express a number of interesting policies, well-suited for exploring layout in the

setting of peripatetic dining philosophers with minimal effort.

7.2.3 Fixed Production

In this section, we compare migration policies against each other and three immobile

layouts when the café’s food production is fixed as defined in Figure 7.3b. The immobile

layouts motivate mobility by quantifying the benefit in terms of time-to-completion and
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Figure 7.5: SLOC per Policy

resource utilization that an application, here peripatetic dining philosophers, can realize by

dynamically changing its layout. The immobile layouts are

ImmobileBestCase One philosopher starts at the café whose production is 1 meal/s, 2

on the café whose production is 2 meals/s, and 3 on the café whose production is 3

meals/s.

ImmobileWorstCase All 6 philosophers start on the café whose production is 1 meal/s.

ImmobileRandom Each philosopher’s starting location is chosen uniformly, at random.

The best case layout requires extrinsic information, here the production rate of each

café. For our evaluation, the worst case layout, which places all philosophers at the slowest
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producing café, is unlikely, at 1
3

6 = 1
729 . We include it as a point of reference. The random

layout is a conservative approximation of an arbitrary program’s layout in the absence of

extrinsic information.

The collections of migration policies we evaluate in Figures 7.6–7.8 include all Coop-

erative, all CooperativeLocal, all Greedy with various sampling rates, all MaxProduction,

and all RandomWaitJaunt. MinimizeMoves minimizes philosopher moves using the same

extrinsic information that underlies the static best layout to bind an instance of the Hermit,

two instances of Gourmand, and three instances MaxProduction attributes to the six

philosophers. RandomPolicy binds a policy from the above policies to each philosopher

uniformly at random.

We compare these migration policies and static layouts along four axis — time to

completion, spoiled food/wasted food, philosopher moves, and chopstick moves.

Each bar chart in this section reports the average of 10 runs. The philosophers make 150

transitions from HUNGRY to THINKING to SLEEPING in their three state state machine,

so they call their eat method 50 times. There are six philosophers, who each eat 1 meal

when they are hungry and three cafés that, in aggregate, produce 6 meal/s. Thus, ignoring

network latency and execution time, the idealized minimum time-to-completion is 50s. When

evaluating the migration policies, we start the philosophers out at a café chosen uniformly

at random.

The messaging overhead of discovering an optimal target shows up in the difference in

time-to-completion of Cooperative and CooperativeLocal in Figure 7.6. As expected, local

cooperative causes philosophers to move slightly more often, with its concomitant impact on

chopstick moves, as shown in Figures 7.9 and 7.10. The box plot in Figure 7.7 demonstrates

that, for most policies, the variation is quite low.

Both random policies — RandomPolicy and RandomWaitJaunt illustrate the utility of

mobility. Random policy conservatively models the effect of mobility when one lacks extrinsic

information about either the application’s behavior or resource distribution and production.

The random policy dramatically demonstrates the utility of mobility — a random collection
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Figure 7.6: Fixed Cooks: Average Time-to-Completion

of migration policies finishes in 57% of the time and 30% of the waste when compared to

the random, immobile layout. Even though RandomWaitJaunt’s decisions are all random,

it outperforms immobile random layout in terms of time-to-completion and wasted food

since it distributes the philosophers more evenly across the cafés temporally than immobile

random.

MaxProduction sacrifices time-to-completion, since it concentrates all the philosophers

on the highest producing café, in exchange for fewer moves.

The three greedy policies differ in the rate at which they sample the resource manager

for each café’s available food. The eager version’s interval is 50ms; greedy’s is 200ms; and

the lazy version’s is 500ms. Note that café’s update their food every 50ms, so sampling

faster than 50ms would waste resources in this application.

Figure 7.6 demonstrates that the three greedy policies are very fast: they are the three

fastest policies, finishing very close to the optimal time of 50s. The greedy policies also
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Figure 7.7: Fixed Cooks: Variation in Time-to-Completion

minimize food wastage, as shown in Figure 7.8. In particular, the three greedy policies

perform better than the best case layout of immobile philosophers. At first, this seems

remarkable. However, the three cafés’ production of meals is not synchronized. The last

greedy philosopher to finish does so as soon as the last food he needs is produced anywhere.

The last immobile philosopher must wait until his café produces his final meal.

To achieve these numbers, the greedy policies move the philosophers around frequently,

as Figure 7.9 makes clear. Under the greedy policies, moreover, the philosophers all move

en masse from their current café to the café with the most available food, dragging their

chopstick along with them. This is the key to why the greedy policy performs so well — most

chopstick contention is local. In an evaluation instrumented to track chopstick acquisition

time, the average time to acquire a chopstick under the cooperative policy was 2.5s, while

that of greedy was 1.3s. Thus, the greedy policy’s chopstick acquisition time is 0.53% or

slightly great than 1
2 the acquisition time of the cooperative policy.
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Figure 7.8: Fixed Cooks: Average Number of Uneaten Meals
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Figure 7.9: Fixed Cooks: Average Number of Philosopher Moves
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Figure 7.10: Fixed Cooks: Average Number of Chopstick Moves

7.2.4 Changing Production

When the distribution of resources is fixed albeit unknown, mobility serves only to allow an

application to recover from a poor initial deployment of its components. When resources

are themselves mobile and changing, an application composed of mobile objects can adapt

as the distribution of resources changes. In this section, we evaluate policies in the context

of changing resources. Specifically, each café’s rate of food production starts out randomly

distributed, then changes every minute.

We change runs from 150 to 1500 so that there are more opportunities for the application

to react to changes in food production at the cafés. 1500 transitions means that each

philosopher needs to eat 500 meals. Since there are 6 philosophers, the earliest the experiment

can end is when the cafés produce 3000 meals. To ease the comparison of runs, we maintain

the invariant that the cafés always produce 6 meals/s so that requisite food is produced in

very nearly the same amount of time. Given this constraint, the optimal time-to-completion

is 3000meal/6meals/s = 500s = 8.3̄m. Each café changes cooks, i.e. its meal production

rate, every minute, for a grand total of 8 times during each run.
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Figure 7.11: Changing Cooks: Average Time-to-Completion

The policies we evaluate are Cooperative, Greedy, Immobile Random Layout, and

Maximum Production. When production is changing, immobile best case and worst case

random layout are not well-defined as a layout could change from best case to worst case as

the distribution of production rates changes.

In Figure 7.11, Greedy finishes first, followed by MaxProduction. The cost advantage of

local chopstick acquisition dominates Cooperative’s better layout of philosophers to cafés.

Figure 7.12 demonstrates Greedy’s excellence in quickly using all available food. Figure 7.13

depicts what the Greedy policy expends to achieve its time-to-completion and wasted meals

numbers: it reconfigures its philosophers frequently.

MaxProduction is the outlier in Figure 7.14. It concentrates all the philosophers at

the café that currently has the highest production, so it moves the philosopher, dragging

their chopsticks with them, only 9 times. Greedy is high in spite of the fact that it also

concentrates the philosophers at a single café, because, as already noted, it frequently moves
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Figure 7.12: Changing Cooks: Average Number of Uneaten Meals

the philosophers, thus dragging the chopsticks along.

7.2.5 Future Work

Our evaluation of the proposed migration policies has been descriptive. Game theory provides

tools that can answer prescriptive questions such as “which collection of policies should

one use?” We can model philosopher layout, and more generally mobile object layout, as

a game. We could define the payoff function that describes different outcomes in terms

of various combinations of the metrics we have analyzed, such as time-to-completion. A

migration policy would then be the strategy that a philosopher follows. We could then

apply game theoretic solution concepts, such as Nash or dominant strategy equilibria, to

find the corresponding set of strategies. Further criteria from economics, such as welfare

maximization, can also be applied.

In the above evaluation, the cost of philosopher migration is fixed and small. An
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Figure 7.13: Changing Cooks: Average Number of Philosopher Moves

interesting evaluation would vary this cost to determine, for instance, the point at which

Cooperative finishes before Greedy.

Two philosophers share each chopstick. Chopstick acquisition is more expensive when the

philosophers that share a chopstick are not collocated. Let philosophers be numbered [1..6].

Consider the partition {1}, {3, 5}, {2, 4, 6}, each assigned to a different café. This particular

layout maximizes the number of edges in the dining philosopher ring that cross the partitions.

It would be interesting to study policies that are aware of the philosopher ring and seek to

minimize these crossings. When chopsticks are fungible resources, such minimization might

be achieved by dynamically changing the dining philosopher ring, i.e. by exchanging a pair

of chopsticks between a pair of philosophers. To our knowledge, exchanging chopsticks has

not been previously studied: the authors of the evolving philosopher problem considered

only the birth and death of a philosopher and the merging of two communities (rings) of

philosophers [53].
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Figure 7.14: Changing Cooks: Average Number of Chopstick Moves

Finally, it may be interesting to investigate peripatetic dining philosophers as a linear

programming problem.

7.3 Summary

In this chapter, we have quantified MAGE’s invocation and marshaling overhead using bench-

marks. We have presented peripatetic dining philosophers, a variant of dining philosophers

designed for a mobile context. Featuring both mobility of philosophers and chopsticks, this

demanding test demonstrates the robustness of the MAGE implementation. We examined

various migration policies and showed how concisely MAGE can express these policies.
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Chapter 8

Related Work

There is nothing new under the sun.

Ecclesiastes, 1:9 NIV

Computing environments change. Machines fail and new ones are added. Gigabit

switches are installed and printers decommissioned. New applications and operating systems

are installed. Mobile devices, like cellphones, change location and can access a different

set of resources than they could in their previous location. Network and CPU load varies.

Often, administrators must handle these changes. The challenge is to build systems and

applications that reliably handle change, without human intervention.

This challenge is seminal. Researchers have worked on it since the dawn of the computer

age. We take some of this work for granted, like adaptive locks or the fact that file systems

test blocks and, once they identify a bad block, they recover the data and avoid that bad

block in the future. In this vast space of work, Figure 8.1 focuses on two overlapping subsets,

systems that, in response to their environment, change their behavior or change their layout,

the mapping of their subcomponents onto execution engines. To differentiate behavioral and

layout adaptation, we present two canonical examples:

Consider a client-server multimedia system that streams data from the server to the client

for playback. This system can encode the stream in two ways: 1) a bandwidth expensive
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Figure 8.1: Reconfigurable Systems

but high-fidelity encoding or 2) a light-weight but lossy encoding. If this system switches

between these two encodings depending on network load, the system exhibits behavioral

adaptation [28, §3.1]. A cluster whose scheduler moves running components around to

maximize its utilization, exemplifies layout adaptation.

Behavior adaptation changes the binding of a method or service name to an implementing

algorithm. Code mobility is “the capability to reconfigure dynamically, at runtime, the

binding between the software components of the application and their physical location within

a computer network” [16, Introduction]. When behavior is sensitive to layout, behavioral

and layout adaptation converge. REV’s motivating example illustrates this convergence: a

mail server performs custom filtering using filters sent by its clients1.

The goal of behavioral adaptation is to replace running code automatically, either to

limit service disruption during an upgrade or in response to the environment, as described

above. Difficulties include handling the reappearance of systems that did not receive an
1Chapter 4 opens with this example.
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update because they were unavailable, and correctly transitioning threads running the old

behavior to the new behavior [64, 4, 107, 28]. As these systems are not closely related to

MAGE, we do not discuss them further here.

Adaptation can either be static, via deployment or initialization, or dynamic. Dynamic

subsumes static, as a dynamic system can reconfigure itself at startup, thus simulating static

adaptation. We use shading to denote adaptation time offered by a project in Figure 8.1.

Hollow circles denote systems that adapt statically. Solid circles denotes systems that adapt

dynamically.

The self-configuring systems (SCS) project is an example of a system that statically

adapts itself autonomously [45]. Given a recipe that selects algorithms (behavior) and layout

based on resource distribution and availability, SCS queries its environment to generate

a site-specific configuration. Because it adapts both behavior and layout, SCS is in the

intersection.

Classically, layout has been manual and static, restricted to deployment. For instance,

RPC-based systems have assumed static distribution of components and their definitions.

Java’s RMI [66], CORBA [92], and COM/DCOM [27] exemplify such RPC-based distributed

system infrastructures.

The idea of supporting dynamic layout, i.e. program mobility, is not new and has

appeared in various forms in distributed operating system [7, 26, 61] and programming

language [48, 37] research. Broadly, this research has explored systems that offer ever greater

degrees of mobility, progressing from the data migration inherent to RPC [13] to the explosion

of interest in MA [99] that began in 1995. The vast majority of mobile agent systems support

mobility through explicit calls to a move command. As a result, the programmer must

intermingle the application’s layout, or per component migration policies, with the code that

implements the application itself.

Not least for this reason, mobile programs are more complex to write and debug than

distributed programs that rely on a static layout of their components. As a result, a number

of programming models that abstract dynamic layout have been proposed. MAGE is one

such programming model. In the rest of the chapter, we compare and contrast MAGE with



8.1. Classic Agent 185

its conceptual siblings.

8.1 Classic Agent

Examples of early work on mobility of programs (and objects) through a language’s runtime

system are Emerald [48], Hermes [14], DOWL [2], and COOL [37]. In particular, Emerald

introduced the ability to “locate an object, move an object to another node, and fix an object

at a particular node.” By moving objects, these early systems achieved a weak, heap-based

form of mobility. In the 1990s, a second wave of mobile code languages burst onto the scene,

including Telescript [108], AgentTCL [52], Aglet [58], Mole [96], Ara [79], Ajanta [101] and

Sumatra [85]. We can classify [50] these systems into those that move execution state as

well as program code (strong mobility), and those that move only code (weak mobility).

Examples of systems that support both are Sumatra and Telescript. The latter impose

constraints on which components can move when to achieve mobility.

Since it is expensive to access and move a thread’s stack safely and the JVM does

not provide access to the CPU’s register file, MAGE currently implements a form of weak

mobility: In general, it waits for all threads to drain from a mobile object before moving it.

MAGE can move active objects, as in the peripatetic dining philosopher case, but only if

the active object cooperates by providing its own bus stops, execution points in which the

thread is in a known state and thus suitable for movement.

These languages provide some form of a move command that programmers can use

to change the location of a program’s components. They stand in the same relation to

programming models like MAGE and its siblings in the same way that assembly language

undergirds higher-level languages, their move command underlies higher-level movement

constructs in the same way that synchronization primitives can be reduced to semaphores.

Listing 8.1 depicts the code an invoking thread would need to execute to realize COD in

a classic agent language. The invoker must discover its own location, collocate a with itself,

before executing the desired operation.
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Listing 8.1: COD in Classic Agent Language

1 local = getLocalHost();
2 a.move(local);
3 result = a.operation();

8.2 FarGo

The FarGo programming model [42, 44, 43, 1] calls its components complets and defines them

to be the transitive closure of the heap references of an object. It is unclear how a complet

differs from Java’s serial representation of an object, which is also the transitive closure of

heap references [67]. FarGo provides programmers three ways to control component mobility.

The first is an explicit call to move. FarGo supports two implicit mobility mechanisms —

events and relocation semantics attached to inter-complet links.

Inter-complet references are essentially stubs in RMI terms. FarGo supports five default

relocation policies in a set of complet reference classes — Link, Pull, Duplicate, Stamp, and

Bi-directional Pull. Programmers can implicitly control component mobility by attaching

instances of these relocation policy classes to inter-component references. For example, if a

component A is interconnected to component B by the Pull relocator (Pull is directional),

then when A moves, B follows it. The A component could have been explicitly moved, moved

by an event, or moved because of the semantics of an inter-component link applied to it. A

FarGo programmer can use these links cause groups of components to move in unison.

FarGo allows programmers and administers to write complet migration policies using

complet references, a Java event API, an Event-Action scripting language, and a graphical

layout tool. The graphical tool relies on the Java event API and script mechanisms, so we

will not discuss it further. Both the Java event API and script mechanisms allow FarGo

programmers to register interest in events, such as the departure or arrival of a complet, or

the startup or shutdown of an execution environment. When an event of interest occurs, a

programmer supplied migration policy executes. The Java event API intermingles component

migration policy with application code; the scripting language separates the two. Events and

complet references allow programmers to express migration policies in two different ways that
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can interact: the migration of a component caused by an event can trigger the migration of

other components due to complet references and vice versa. FarGo programmers must take

care to avoid unintended interactions between these two policy mechanisms.

Unlike FarGo, MAGE offers a single mechanism, the mobility attribute, for implicitly

controlling component mobility and expressing migration policies. Mobility attributes and

FarGo’s inter-complet references are both first class entities in the sense that they can be

passed into functions and modified within Java, their implementation language. Both FarGo

and MAGE allow the dynamic adaptation of migration policies through the binding and

rebinding of their complet links and mobility attributes to components at runtime. FarGo’s

event-action scripts, while not first class, can also be dynamically bound to complets in FarGo.

MAGE allows programmers to define their own policies by subclassing a default mobility

attribute. FarGo’s complet link classes are not intended to be extended by programmers.

MAGE’s mobility attributes can be composed (Section 3.5); FarGo makes no provision for

the composition of either its complet links or its event-action scripts.

FarGo’s complet reference mobility allows programmers to ensure that tightly coupled

complets migrate and thus remain together. In other words, FarGo can move components

independent of message exchange. Unilateral movement of a set of components is particularly

important when moving components to and from hosts that are frequently disconnected, such

as laptops [80]. Components can form transitory working sets in the course of a program’s

computation. In general, these working sets are difficult to statically discover. MAGE’s

invocation based mechanism lets a program’s execution determine how the program’s

components move based on messages actually sent, rather than a programmer’s static,

and possibly incorrect notion, of component interaction. FarGo’s event-based mechanism

offers a natural way for a distributed application to react to the a machine going offline for

maintenance, since it has only to post the event. In MAGE, the components would move off

the host only as they were invoked, so a programmer would have to manually invoke each

object on a host to simulate a host shutdown event.
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8.3 StratOSphere

Inspired by a taxonomy of distributed execution scenarios proposed by Semeczko et al. [89],

the StratOSphere project [118, 120, 119] maps these scenarios to computation paradigms,

which it represents as messages. StratOSphere calls those scenarios that move only data

to the target execution environment RPC, or Client/Server (CS) and represents CS as an

exchange of messages. StratOSphere messages implement an interface that declares dispatch

and send methods. To realizes COD, StratOSphere first sends a MobileObjectMessage

message to fetch code from a remote system, before calling dispatch on the return message.

StratOSphere’s REV message, RemoteEvaluationMessage, carries local components to

a remote server that unmarshals the message and calls its dispatch method.

The StratOSphere authors noted that many scenarios could not be represented by their

CS, COD and REV messages and proposed a new paradigm, which they called Remote Code

Evaluation (RCE) to capture these scenarios. An RCE computation is any computation

that, from the point of view of the invoker, requires components from the local execution

environment and other execution environments remote to the target execution environment.

StratOSphere represents this paradigm as an RCE message (RemoteExecutionMessage)

that conveys the local components to the remote target execution environment, and then

gathers the remaining components from the nontarget remote execution environments before

execution proceeds at the target.

StratOSphere makes these messages, and thus the computation paradigms they represent,

available to programmers through a class hierarchy. Because its messages are passive,

StratOSphere introduces a separate set of classes to represent the mobile code paradigm.

These classes allow the programmer to instantiate active objects that import components to

execute, then aggregate and carry the results of the executions of these components as they

migrate throughout the network.

Through its messages, StratOSphere allows one to use different mobility models to

write distributed programs. Each message must be statically created by the programmer,

so component mobility in StratOSphere is explicit, and component migration policy and



8.3. StratOSphere 189

an application’s core logic are not separate. StratOSphere programmers may be able to

achieve some runtime flexibility in the expression of their migration policies by using the

polymorphism of the message class hierarchy to instantiate a message subclass appropriate

for a given network configuration, such as instantiating a COD message upon one pass

through a code block and a CS message upon another, while using a message abstract base

class as a handle, but the authors do not address this possibility.

In StratOSphere, a computation may require more than one component. This is crucial

to the definition of RCE above, which makes sense only if the computation requires compo-

nents from different locations. Programmers using StratOSphere map the components to

computations by fetching these components, by name, from a repository into their message.

The StratOSphere literature does not address how the programmer specifies the order of

execution of the components required by a computation. As StratOSphere’s defines them,

the reply to a MobileObjectMessage (COD) is not necessarily dispatched, while the

result of dispatching an RemoteEvaluationMessage (REV) is not necessarily returned

to the invoker/sender. Presumably, the programmer must dispatch the resulting message

in the case of COD and manually return the results of an REV execution. The fact that

dispatch and a return value is inherent to the CS message, but not the COD and REV

messages, is a nonorthogonal property of StratOSphere’s programming model.

MAGE has a simpler notion of computation. MAGE binds mobility attributes to a

component to control where it executes, and thus which computation paradigm, COD or

REV, governs invocations of that component. To emulate StratOSphere’s RCE paradigm, a

MAGE programmer would first send a component that invokes the other components in the

RCE set. This component would bind a COD attribute to each of its references to the other

components. As it invokes operations on the other components, MAGE would then lazily

collocate them.
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Step Action Description
0 a.srStart starts the sender-receiver on node A
1 a.controllerStart starts the controller on node A
2 b.srStart starts the sender-receiver on node B
3 b.controllerStart starts the controller on node B
4 a.sendRequest A sends a request for the code required
5 b.acceptRequest B accepts the request
6 b.sendLMU B packs and tries to send the LMU
7 b.examine B inspects the target node (A) to see whether it is

trusted
8 b.trusted B finds that A is trusted
9 b.serialise B tries to serialise the LMU
10 b.serSuccess B successfully serialises the LMU
11 a.receiveLMU B sends the LMU / A receives it
12 a.deserialise A deserialises the LMU
13 a.deserialised the LMU is deserialised and checked for conflicts
14 a.conflict a conflict is detected
15 a.conflictResolved the conflict is resolved
16 a.deserSuccess deserialisation process is successfully completed
17 a.inspect LMU is inspected for security
18 a.accepted it is accepted into the system
19 a.deployLMU LMU is passed on to the application for deployment
20 a.lmuAccept the application fully accepts it
21 a.deployed LMU is successfully deployed on A

Table 8.1: COD in SATIN

8.4 SATIN

SATIN is a meta-model for applications hosted on mobile devices. A SATIN-compliant

middleware must support dynamic reconfiguration of both behavior and layout. SATIN

defines logical mobility, as distinct from the physical mobility of a cellphone, as“the migration

of a partial or complete application or process from one host to another” [123, §1]. SATIN’s

unit of mobility is a logical mobility unit (LMU), which contains an arbitrary number of

logical mobility entities (LME). In terms of MAGE, an LMU is a component, while a set

of LME is analogous to the heap closure of the fields of a component. SATIN associates a

set of attributes called properties with each LMU. These properties list the hardware and

software dependencies of the LMU. For instance, they might specify that the LMU can only

run a post Java 5 JVM.



8.5. Columba 191

Table 8.1, from [122, §1.3.3], shows how SATIN maps COD onto a sequence of actions:

A and B are nodes, represented by a and b in the code. It is unclear whether Table 8.1

depicts model actions in the language of SATIN’s meta-model or a sequence of statements

in a SATIN-compliant middleware implementation. Even if Table 8.1 depicts model actions

not code, its näıve realization as a programming model would be very low-level, even more

so than classic agent, and with the attendant lack of isolating the mobility concern.

8.5 Columba

Columba discusses mobility in terms of binding [10]. Columba associates a shadow proxy

each mobile device. A shadow proxy is mobile code, implemented using the Java-based

Secure and Open Mobile Agent platform. A binder manager manages all of a shadow proxy’s

external references (bindings) and can dynamically and transparently adjusts those bindings,

under the control of the policy manager. XML metadata describe each resource, such as

whether the resource can move, its dependencies, and what operations it exports. Policies,

written in the declarative Ponder language, use the metadata to determine how to change

bindings. Columba allows administrators to add new or change existing policies at runtime.

Columba realizes COD when an event triggers the binder manager to execute a “co-locality

policy” which collocates two resources, which may be shadow proxies, then rewrites their

previously remote bindings for each other with local bindings.

Columba offers two interesting features that MAGE does not: it 1) allows programmers,

via its use of XML metadata, to write resource aware policies with less effort than MAGE’s

current implementation requires; and 2) supports injecting new policies into a running system.

For the latter, MAGE assumes the set of policies (attributes) that a programmer can choose

from is statically fixed. In contrast, MAGE 1) reports and analyzes its overhead, while

Columba does not; 2) supports the composition of policies; and 3) uses a single language,

Java, to express both application logic and migration policies. The fact that Columba

separates the application logic and policy specification into two languages, Java and Ponder,

hinders debugging (how can a programmer step through a shadow proxy when the binder
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manager can rewrite its bindings?) and increases the cognitive scope of the programmer’s

task when using Columba.

8.6 Aspect Oriented Programming

Modularization as a means of managing complexity is one of software engineering’s greatest

triumphs. Aspect-oriented programming (AOP) [49] is an attempt to modularize cross-

cutting concerns, those concerns that cannot be easily modularized because they overarch or

frame different concerns. Logging and mobility, our particular concern, are two examples.

AOP calls these cross-cutting concerns aspects and defines joinpoints as those points in

the execution of a program where different concerns can be woven together. Pointcuts are

named subsets of joinpoints; an example pointcut is the set of all method invocations in a

program. Aspect weaving is usually static, but can be dynamic [78].

In AOP terms, MAGE dynamically weaves the mobility aspect into a distributed program

at the method call pointcut and applies its attributes like before advice. AOP treats aspects

as self-contained and focuses on their composition with the target code and with each other.

Since the unit of composition in AOP is an aspect, an AOP programmer would be forced to

represent each different migration policy as a separate aspect [103]. MAGE uses a single

language, Java, for both the application logic and the mobility concern in the implementation

of its attributes. The binding of attributes directly appears in the application logic, and

is not expressed indirectly as a pointcut. Relative to AOP, this fact reduces the cognitive

scope of MAGE, easing debugging and maintenance. MAGE focuses solely on the mobility

concern. Freed of the need to support very general cross-cutting concern, MAGE is able to

restrict its attributes and support their composition.

D2AL [9] is a AOP model that focuses on the component mobility aspect of distributed

programming. D2AL provides programmers with a declarative language that specifies

which components should be co-located and whether that co-location should be realized by

movement or replication. D2AL’s proposed weaver works at compile time so D2AL does not

express runtime component migration policies; rather, it focuses on static program layout.
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RoleEP [103] encapsulates component mobility in roles, and thereby addresses AOP’s

problem of how to separate migration policies without assigning them to different aspects.

These roles dynamically bind to a component and extend that component with new methods

that govern both how their migration policy and how other components can interact with

the component. In RoleEP, a migration policy must be expressed separately from a role as a

series of calls to the migration methods provided by that role. Mobility attributes in MAGE

do not extend the interface of components to which they are bound; rather, they implicitly

encapsulate a migration policy that the MAGE RTS applies upon each method invocation.

8.7 P2PMobileAgents

Like Columba, P2PMobileAgents [38] extends the explicit migration of traditional mobile

agent programming models with metadata about the resources needed and provided by the

agents and execution environment in the system and a declarative domain specific language

for migration policies that selects an execution environment, given an agent’s resource needs

and the current network configuration. P2PMobileAgents uses XML to implement both of

these extensions. It uses broadcasts in a P2P overlay network of execution environments to

find agents and resources.

The authors do not address how to bind migration policies to agents, nor whether or

not these policies can be composed. However, an example they give implies that, prior to

an explicit migrate call, P2PMobileAgents executes the migration policy as a P2P query

broadcast to the overlay network. Since queries must be built statically, it appears that,

unlike MAGE, P2PMobileAgents’ programming model is static, in the sense that it does not

allow the rebinding of policies to components at runtime.

8.8 Summary

Table 8.2 lists whether and how the programming models discussed in this chapter isolate

the mobility concern from the application logic. The difficulty associated with attempting
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Programming Model Separation of Concerns
Classic Agent no
Columba scripts
FarGo scripts
MAGE attributes
P2PMobileAgents partial: target selection
RoleEP roles
SATIN no
StratoSphere no

Table 8.2: Mobile Code Programming Models: Separation of Concerns

Programming Model Binding Trigger
Columba resources events
FarGo Complet events
MAGE stub, component invocation
P2PMobileAgents n/a n/a
RoleEP objects invocation

Table 8.3: Implicit Mobility Control

Programming Model First Class Resource-Aware Language
application

Columba no dependent Java
Java,

FarGo yes yes Event-Action scripts
MAGE yes yes Java

declarative
P2PMobileAgents no yes XML-based DSL

application
RoleEP yes dependent Java

Table 8.4: Migration Policy

to achieve this isolation strongly differentiates those that do not from MAGE, so we drop

them from the tables that follow.

Although the remaining programming models all support explicit mobility through a

move command, separating the mobility concern implies that a component’s migration

policy is not always manual. Table 8.3 summarizes to what the remaining programming

models bind a migration policy and what triggers its application.

Table 8.4 characterizes the properties of the migration policies in each programming
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model. By first class, we mean an entity that can be passed to method calls and modified

within the language of implementation [95]. By resource aware, we mean a distributed

system that tracks the resource needs of components and the availability of resources in the

system [85].
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Chapter 9

Conclusion

Don’t look back. Something might be gaining on you.

Satchel Paige, 1906–1982

MAGE’s raison d’être is that computation and resources must be dynamically co-located

as resources appear and disappear and move around on a network. To realize this ambition,

MAGE defines a programming model whose bedrock is the mobility attribute abstraction.

This model defines expressions over mobile object, proxy, and its mobility attribute types.

Objects move when the application of which they are a part decides to move either the

computation or the data that they represent from one namespace to another, usually for

performance and efficiency reasons. In MAGE, an application makes its distribution wishes

known via mobility attributes. Since, as we have shown, mobility attributes can encompass

any distributed programming model and dynamically bind to program components, they

allow the programmer who uses them to build flexible and adaptable distributed programs

well-suited to today’s dynamic and increasingly huge networks.

The principal contribution of this thesis is the MAGE programming model and its

realization. A programmer would choose MAGE for projects that require dynamic layout

adaptation because MAGE (1) separates the migration concern into attributes; (2) facilitates

policy reuse via attribute composition; and (3) offers powerful, flexible, and elegant control
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over object and invocation placement.

We believe that MAGE will provide the community a valuable framework for thinking

about computation mobility. MAGE provides a high level of abstraction that unites the

distributed programming models currently in widespread use, separates core application code

from computation placement policies, and facilities the construction of complex migration

policies using simple, well-understood policies as building blocks.

9.1 Future Work

The work begun in this dissertation can continue in a number of directions.

Implementation: Usually, the performance gain of collocation motivates mobility. The

current implementation of MAGE undermines this motivation because it uses RPC,

albeit over the TCP/IP loopback stack, even when two mobile objects are collocated,

as discussed in Section 6.1. Of possible implementation improvements, the conversion

of invocations made by collocated mobile objects from RPC to local procedure calls is

an important next step.

Applications: MAGE is a programming model whose purpose is to ease and facilitate

a programmer’s control over a distributed application’s layout. Therefore, useful

and interesting applications are the measure of MAGE. A load-balancing application

could test server-side component mobility attributes. Similarly, an application that

demonstrates the utility of attribute operators should be formulated and built. Finally,

MAGE can move components to and from a compute farm in response to the cost of

CPU cycles. For a long-running scientific application, such a migration policy could

reduce time-to-completion without exceeding a budget.

Forwarding Pointers: The comparison of a traditional, centralized directory and forward-

ing pointers in Chapter 5 is analytic. I intend to implement the optimized algorithm

and investigate its utility in mobile device applications, such as mobile TCP/IP. I am

also interested in investigating the applicability of forwarding pointers to P2P.



9.1. Future Work 198

Peripatetic Dining Philosophers (PDP): When I formulated PDP, my ambition was

to formulate a problem that researchers could use to evaluate the performance and

expressivity of languages that support mobility. I intend to port PDP to a representative

set of mobile-code languages and use it to compare and contrast them.
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acyclic garbage collection. In Proceedings of the 11th ACM Symposium on Principles

of Distributed Computing (PODC), pages 135–146, New York, NY, USA, 1992. ACM.

[91] Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust, distributed

references supporting acyclic garbage collection. Technical Report 1799, INRIA, 1992.

[92] J. Siegel. CORBA: Fundamentals and Programming. Wiley, 1996.

[93] J.W. Stamos and D.K. Gifford. Remote evaluation. In ACM Transactions on Pro-

gramming Languages and Systems, volume 12, pages 537–565, October 1990.

[94] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for Internet applications. In Proceedings

of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications (SIGCOMM), San Diego, California, August 2001.

[95] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, Cambridge, MA, 1977.

http://mathworld.wolfram.com/CharacteristicFunction.html
http://mathworld.wolfram.com/CharacteristicFunction.html


REFERENCES 209

[96] M. Strasser, J. Baumann, and F. Hohl. Mole: A Java based mobile agent system. In

Proceedings of the 2nd ECOOP Workshop on Mobile Object Systems, 1997.

[97] Andrew Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.

[98] The Coq Development Team. The Coq proof assistant reference manual. Technical

report, INRIA, 2009.

[99] T. Thorn. Programming languages for mobile code. ACM Computing Surveys,

29(3):213–239, September 1997.

[100] E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java application partitioning.

In Proceedings of the 16th European Conference on Object-Oriented Programming

(ECOOP), Malaga, June 2002.

[101] Anand Tripathi, Neeran Karnik, Manish Vora, Tanvir Ahmed, and Ram Singh. Mo-

bile agent programming in Ajanta. In Proceedings of the 19th IEEE International

Conference on Distributed Computing Systems (ICDCS), May 1999.

[102] Anand R. Tripathi, Neeran M. Karnik, Tanvir Ahmed, Ram D. Singh, Arvind Prakash,

Vineet Kakani, Manish K. Vora, and Mukta Pathak. Design of the Ajanta system for

mobile agent programming. Journal of Systems and Software, 62(2):123–140, May

2002.

[103] Naoyasu Ubayashi and Tetsuo Tamai. Separation of concerns in mobile agent applica-

tions. In Proceedings of the 3rd International Conference Reflection 2001, LNCS 2192,

pages 89–109. Springer, 2001.

[104] Peter Wayner. Cloud versus cloud: A guided tour of Amazon, Google, AppNexus, and

GoGrid. InfoWorld, July 21 2008.

[105] Eric W. Weisstein. Machin’s formula. http://mathworld.wolfram.com/

MachinsFormula.html, 2007. From MathWorld — A Wolfram Web Resource.

http://mathworld.wolfram.com/MachinsFormula.html
http://mathworld.wolfram.com/MachinsFormula.html


REFERENCES 210

[106] David A. Wheeler. Linux kernel 2.6: It’s worth more! http://groklaw.net,

October 2004.

[107] K. Whisnant, Z. T. Kalbarczyk, and R. K. Iyer. A system model for dynamically

reconfigurable software. IBM System Journal, 42(1):45–59, 2003.

[108] Jim E. White. Telescript technology: The foundation for the electronic marketplace.

General Magic Inc. White Paper, 1994. http://www.magic.com.

[109] Jim E. White. Mobile agents. General Magic Inc. White Paper, 1996. http:

//www.magic.com.

[110] Wikipedia. Adobe Flash. http://en.wikipedia.org/wiki/Adobe_Flash,

2007.

[111] Wikipedia. Indicator function. http://en.wikipedia.org/wiki/Indicator_

function, August 2007.

[112] Wikipedia. Mozilla JavaScript. http://en.wikipedia.org/wiki/JavaScript,

2007.

[113] Wikipedia. Operational semantics. http://en.wikipedia.org/wiki/

Operational_semantics, August 2007.

[114] Wikipedia. Sun grid. http://en.wikipedia.org/wiki/Sun_Grid, July 2007.

[115] Wikipedia. Web 2.0. http://en.wikipedia.org/wiki/Web_2, August 2007.

[116] Wikipedia. Directed acyclic graph. http://en.wikipedia.org/wiki/

Directed_acyclic_graph, November 2008.

[117] Wikipedia. Livelock. http://en.wikipedia.org/wiki/Deadlock#Livelock,

September 2008.

[118] Daniel Wu, Divyakant Agrawal, and Amr El Abbadi. StratOSphere: Mobile processing

of distributed objects in Java. In Proceedings of the 4th Annual ACM/IEEE Interna-

http://groklaw.net
http://www.magic.com
http://www.magic.com
http://www.magic.com
http://en.wikipedia.org/wiki/Adobe_Flash
http://en.wikipedia.org/wiki/Indicator_function
http://en.wikipedia.org/wiki/Indicator_function
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Operational_semantics
http://en.wikipedia.org/wiki/Operational_semantics
http://en.wikipedia.org/wiki/Sun_Grid
http://en.wikipedia.org/wiki/Web_2
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Deadlock#Livelock


REFERENCES 211

tional Conference on Mobile Computing and Networking (MobiCom), pages 121–132,

Dallas, TX, October 1998.

[119] Daniel Wu, Divyakant Agrawal, and Amr El Abbadi. Mobility and extensibility in the

StratOSphere framework. Distributed and Parallel Databases, 7(3):289–317, 1999.

[120] Daniel Wu, Divyakant Agrawal, and Amr El Abbadi. StratOSphere: Unification of

code, data, location, scope, and mobility. In Proceedings of International Symposium

on Distributed Objects and Applications (DOA), Edinburgh, Scotland, September 1999.

[121] YourKit, LLC. www.yourkit.com, January 2009.

[122] Stefanos Zachariadis, Manish Lad, Cecilia Mascolo, and Wolfgang Emmerich. Building

adaptable mobile middleware services using logical mobility techniques. In Contribu-

tions to Ubiquitous Computing, pages 3–26. Springer-Verlag: Heidelberg, Germany,

2007.

[123] Stefanos Zachariadis, Cecilia Mascolo, and Wolfgang Emmerich. The SATIN component

system — a metamodel for engineering adaptable mobile systems. IEEE Transactions

on Software Engineering (TSE), 32(11):910–927, November 2006.

www.yourkit.com

	List of Algorithms
	List of Figures
	List of Listings
	List of Tables
	Introduction
	The Layout Problem
	Mobility
	MAGE

	Two  Tutorials
	RMI
	Server
	Client

	MAGE
	Summary

	Mobility Attributes
	Terminology
	Integrating Invocation and Mobility
	Primitive Mobility Attributes
	Operational Semantics

	Set Mobility Attributes
	Operational Semantics
	Mobility d-Attributes
	Coercion via Mobility a-Attributes
	Dynamic Mobility Attributes

	Mobility Attribute Operators
	Operational Semantics

	Component Mobility Attributes
	Operational Semantics

	Summary

	The MAGE Programming Model
	Primitives
	Mobile Objects
	MAGE Proxy
	Mobility Attributes

	Mobility Attribute Class Hierarchy
	Primitive Mobility Attributes
	The d- and a- Mobility Attributes

	Dynamic Mobility Attributes
	The Itinerary Mobility Attribute
	The MajorityRules Mobility Attribute
	The MAGE Resource Manager, or Resource Awareness

	Operations
	Find Operators
	Mobility Attribute Operators
	Bind Operators
	Invocation

	Summary

	Location Services
	Background
	Directory vs. Forwarding Pointers: Message Cost
	D's Message Cost
	FP's Message Cost
	Collapsing FP Chains
	Single Invoker Cost Comparison

	Correctness of FP
	Correctness of FPc

	A Comparison of Two Invocation Protocols under FP
	FI Cost Analysis
	SI Cost Analysis
	FI vs. SI

	Related Work
	Expected Message Cost and the Correctness of FP
	Directory vs. Forwarding Pointers
	FI vs. SI

	Future Work
	Summary

	Implementation
	Challenges
	The RMI Runtime System
	Invocation Server
	Distributed Garbage Collection
	Registry

	The MAGE Runtime System
	Invocation Server
	Distributed Garbage Collection
	Class Server
	MAGE Registry
	Invocation Return Listener
	VM Port Discovery
	Resource Manager

	Primitives
	Mobile Objects
	MAGE Proxies

	Operations
	Find
	Bind
	Mobility Attribute Operators
	Invocation

	Limitations
	Summary

	Evaluation
	Baseline Measurements
	Invocation Micro-Benchmarks
	Overhead in the Presence of Work

	Peripatetic Dining Philosophers
	A MAGE Implementation
	Migration Policies
	Fixed Production
	Changing Production
	Future Work

	Summary

	Related Work
	Classic Agent
	FarGo
	StratOSphere
	SATIN
	Columba
	Aspect Oriented Programming
	P2PMobileAgents
	Summary

	Conclusion
	Future Work

	References

