
Comparing Static Bug Finders and Statistical Prediction

Foyzur Rahman† Sameer Khatri† Earl T. Barr‡ Premkumar Devanbu†

†Department of Computer Science
University of California Davis

Davis, CA 95616, USA
{mfrahman, sakhatri, ptdevanbu}@ucdavis.edu

‡Department of Computer Science
University College London
London, WC1E 6BT, UK

e.barr@ucl.ac.uk

ABSTRACT

The all-important goal of delivering better software at lower
cost has led to a vital, enduring quest for ways to find and
remove defects efficiently and accurately. To this end, two
parallel lines of research have emerged over the last years.
Static analysis seeks to find defects using algorithms that
process well-defined semantic abstractions of code. Statisti-
cal defect prediction uses historical data to estimate parame-
ters of statistical formulae modeling the phenomena thought
to govern defect occurrence and predict where defects are
likely to occur. These two approaches have emerged from
distinct intellectual traditions and have largely evolved inde-
pendently, in “splendid isolation”. In this paper, we evaluate
these two (largely) disparate approaches on a similar footing.
We use historical defect data to apprise the two approaches,
compare them, and seek synergies. We find that under some
accounting principles, they provide comparable benefits; we
also find that in some settings, the performance of certain
static bug-finders can be enhanced using information pro-
vided by statistical defect prediction.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Code Inspections and Walk-Throughs

General Terms

Experimentation; Measurement; Reliability; Verification

Keywords

Software Quality; Fault Prediction; Inspection; Empirical
Software Engineering; Empirical Research

1. INTRODUCTION
Given the centrality of software in modern life and the

fallibility of human programmers, better software quality is
a never-ending quest. Software quality-control involves sev-
eral distinct approaches, including testing, inspection, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31–June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

formal verification. In this paper, we use historical defect
data to comparatively evaluate and search for synergies be-
tween two approaches that have, of late, been of tremendous
interest both in academia and industry: static bug-finding
and statistical defect prediction

Static Bug-Finding (SBF): These approaches range from
simple code pattern-matching techniques to rigorous static
analyses that process carefully designed semantic abstrac-
tions of code; all SBF tools find and report likely defect
locations in code. These likely locations are reported to pro-
grammers (typically) at coding-time. The pattern-matching
techniques, such as PMD, are unsound but scale well and
have been effectively employed in industry. Hybrid tools
like FindBugs incorporate both static data-flow analysis,
and pattern matching. Tools like ESC-Java [8] and CodeS-
onar1 are slower, but their analyzes have desirable soundness
properties (See Section 2.2). In practice, however, reported
warnings are infested with both false positives and/or false
negatives. False positives can waste a developer’s time, and
false negatives can allow defects to escape and cause cus-
tomer grief. Developers usually cannot determine the truth
or falsity of a given warning without examining code.

Defect Prediction (DP): Extensive and widespread data-
gathering in modern software processes stimulates this ap-
proach. Animated by theories of the human and techni-
cal factors that durably influence errors, researchers have
channeled this deluge of data to estimate rich statistical
(and machine-learning) models that predict where defects
can occur. Given the relative immutability of human na-
ture, models are expected to be quite stable over relatively
long time intervals. Thus, it has been believed statistical
methods can predict where defects are likely to occur in the
future. Empirical evaluations using fairly sophisticated eco-
nomic models suggest that these methods are indeed likely
to be effective in helping to locate defects [2, 5, 12]

Motivation/Barriers: These approaches have emerged
from parallel and disparate traditions of intellectual thought:
one driven by algorithm and abstraction over code, and
other by statistical methods over large defect datasets. These
differences are perhaps analogous to the Chomsky/Norvig
debate in computational linguistics (see Section 2).

Although the “holy grail” of SBF is automatically proving
a correctness property of a program, i.e. certifying the pro-
gram free of a certain class of bugs, undecidability means
that, in practice, SBF produces warnings that identify lines
for developer inspection. For its part, DP identifies files for

1http://www.grammatech.com/codesonar

http://www.grammatech.com/codesonar

inspection. In practice, then, these approaches tackle the
same problem: improving inspection efficiency, the problem
of finding minimal, potentially defective regions in source
for careful inspection. However, neither is infallible.

Although, in practice, these two approaches share the
same goal, their performance is difficult to compare. We
call this the comparability of bugginess identification (CBI)
problem; This problem comprises two subproblems: zona-
tion and measurement. The zonation problem concerns the
granularity at which a tool reports bugginess: intra-line,
line, statement, scope, block, method, file, etc.. While most
defects are local and contiguous, a single defect can be arbi-
trarily scattered in the sense that fixing it requires changes
to lines throughout a codebase. Defect scatter causes the
measurement problem: given a particular zonation, how
should one measure bug identification? Choices for a bi-
nary score include 1) the reported zone must subsume the
defect or 2) it must simply intersect the defect; choices for a
fractional score include 1) the ratio of the size of intersection
to the size of the defect or 2) their Jaccard index.

The IEEE Computer Society defines software engineering
as “(1) The application of a systematic, disciplined, quan-
tifiable approach to the development, operation, and main-
tenance of software; that is, the application of engineering
to software. (2) The study of approaches as in (1).” [24];
its goal is to find ways to produce better, cheaper software
faster. The CBI problem, therefore, cuts to the core of soft-
ware engineering: neglecting it violates this imperative be-
cause it not only leaves unanswered which approach is bet-
ter than the other under what circumstances, but it also
forgoes the exploration of their synergies in service of this
goal. Both approaches have attracted considerable invest-
ment, which could be better guided by a good answer to the
former question; failure to address the latter has stymied
cross-pollination between the two traditions. We take the
first steps toward solving it and building a bridge between
SBF and DP.

The two approaches offer very different trade-offs. DP

tools are very easy to implement: once adequate history is
available, programming language, build environment, plat-
form evolution, etc. are immaterial; indeed, process meta-
data is very easily extracted from bug repositories and ver-
sion control has proven to be much more valuable than met-
rics based on source code content [19]. On the other hand,
DP generally operates at a coarse granularity, typically sug-
gesting entire files for inspection. SBF tools, including bug-
finders, are fine-grained, suggesting individual lines to in-
spect; but they are language- and platform-specific; they
require a variety of compilation, thus carrying the baggage
of build procedures that vary with language, platform and
even time. SBF tools can be very difficult to deploy2. In-
deed, our dataset of warnings from bug-finding tools is very
hard-won, and we claim the public availability of our dataset
is itself an important stepping-stone for future work on com-
paring the two and searching for synergies.

In current state-of-the-art SBF and DP techniques and
tools, the CBI problem first manifests itself in differences
in how the two traditions have done their evaluation. In
terms of zonation, DP works at file granularity while SBF

works at line granularity; this zonation mismatch compli-
cates the choice of a bug-identification measure. Solving the

2See [4] for vivid testimonials on deployment difficulties.

CBI problem, and comparing the two approaches is vital,
given the investments in using them and the high human
and economic cost of software defects. Section 3.2 presents
the choices we made and the techniques we deployed to over-
come these challenges and present a first solution to the CBI
problem.

We empirically study the value of three different static
bug-finding tools, FindBugs, Jlint, and pmd, in conjunc-
tion with statistical defect prediction, using a very large set
of historical defects.

• We formulate and present two cost-effectiveness-based
accounting approaches to the comparability of buggi-
ness identification problem (CBI).

• We find no significant differences in the cost-effect-
iveness of the DP and the two SBF techniques —
FindBugs and pmd— we could evaluate.

• We find SBF and DP do sometimes find different de-
fects.

• We find the incorporation of metrics derived from SBF

does not significantly improve the performance of DP

techniques.

• We find that SBF tools frequently perform better when
ordering their warnings using priorities produced by
DP than when using their native priorities.

• Finally, we have (with a great deal of effort) created a
multi-release repository of warnings from three tools,
Jlint, pmd, and FindBugs, which we shall make pub-
licly available for future research.

These findings are actionable; as explained earlier, DP are
independent of language and build procedures, and work
very well with process meta data [19]; if they could pro-
vide comparable benefits, this is good news for projects
that have abundant process data, but have complex, multi-
lingual source bases and build procedures that (see [4]) in-
hibit the adoption of SBF tools. It is also interesting that
they do find different defects in some cases, so that if bud-
gets allow, it might be worthwhile to use both. Finally,
under one measurement regime, DP appears to be almost
always a better way to order SBF warnings, compared to
their native priority-ordering.

2. BACKGROUND
The contrast between SBF and DP has parallels in the

Chomsky-vs-Norvig debate about statistical vs. first princi-
ples approaches to natural language processing3. Chomsky
tends to favor first-principles approaches to NLP, whereas
Norvig argues that NLP should be based on the statistics
of human linguistic behavior. Defects in software, likewise,
arise from the interaction of formal semantics of PL and
human behavioural imperfections.

SBF researchers observe a pattern in defect occurrence,
use PL semantics to theorize how such defects could be
found, and then engineer abstractions and algorithms to find
these defects. DP researchers observe patterns in human be-
haviors that cause defects, and (because formal theories of

3Norvig-vs-Chomksy and the fight for the future of AI at
http://www.tor.com, June 2011.

http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai
http://www.tor.com

humans do not exist), pursue the ML approach of extract-
ing features and letting learning algorithms do the work of
fitting the data. Perhaps because of different intellectual
traditions, the two have never been properly compared and
synthesized. In this paper, we first attack the problem of
comparing the two on an equal footing.

(Prelude) Defect data: Most modern software projects
follow software processes that require extensive data gath-
ering. Version control tools such as git track every change
made to the code. Tools such as BugZilla and jira are
widely used to record bug reports, track the associated dis-
cussion and task allocation, and eventually relate the fix to
a specific commit in a specific set of files by a specific in-
dividual. It is thus possible to find where (which files and
line numbers) defect repairs occurred. Because of the careful
tracking of changes by version control systems such as git,
it is actually possible to precisely track the provenance of
each line of code; it is thus possible to track, for every line
of code that is changed to fix a defect, exactly where that
line came from. A large body of research has been animated
by the availability of this data, and a steady stream of re-
sults in defect prediction and the etiologies of defects has
been coming out in recent years. In this paper, we use this
data to evaluate static analysis tools and statistical defect
prediction, and to compare the two and seek synergies.

2.1 Statistical Defect Prediction
Statistical defect prediction (DP) employs historical data

on reported (and repaired) defects to predict the location of
previously unknown defects that lurk in the code.

Specifically, let us assume that we are developing the code
for release Rn. When working on Rn, we are also repair-
ing defects reported on the previous release Rn−1. In the
process of working on Rn, we also, invariably, introduce de-
fects, some of which will be discovered and reported after the
official release of Rn, and presumably, fixed during the de-
velopment of Rn+1. In modern development, one typically
gathers not just the details of all defect repairs during R1

· · · Rn, but also other process and product metrics associ-
ated with files (or packages, or directories) such as complex-
ity metrics, number of developers, number of lines changed,
number of commits, etc. The task of statistical defect pre-
diction is to learn a per-file prediction function bugs of the
form

defectcount(f) = bugs(m1(f),m2(f), · · · ,mn(f)),

where m1,m2, · · · are process or product metrics over the
file f , as of release of Rn and the predicted defect count is
the number of defects bugs predicts will be discovered in
the file f . In some settings bugs is a binary, indicating only
whether some defect is predicted to occur in f .
Defect prediction is a fairly mature field of research. Pre-

vious research indicates that process metrics [19] and orga-
nizational metrics [17] are quite effective in predicting the
loci of defects. Defect prediction models have been reported
to have been used at Google [13].

Evaluating Defect Prediction: DP tools are intended
to be used to focus quality control efforts. Good predic-
tion performance is thus vital, to ensure that limited money
and time are spent effectively. Several different approaches
to evaluating DP tool performance have been reported. IR
methods such as precision, recall and accuracy are easily
calculated, but are difficult to interpret in the highly class-

imbalanced settings of defect prediction; a simple guesser
that predicts all files to be defect-free achieves high-levels
of accuracy. In response, the non-parametric AUROC (area
under the receiver-operating characteristic curve, also known
as AUC) has become increasingly popular. However, as
noted by Arisholm & Briand [2], measures of DP perfor-
mance should be sensitive to the cost of inspecting files;
in particular larger files are often more costly to inspect.
They proposed AUCEC (area under the cost-effectiveness
curve), a “lift-chart” measure, non-parametric (like AUC),
but different in that it is sensitive to the cost of inspection,
essentially based on the number of lines inspected. It is by
now de rigueur for papers on DP tools to report a variety
of parametric, non-parametric, and cost-sensitive measures
of performance. The scholarly literature on well-evaluated
DP tools is extensive, as a simple search will reveal; we have
just presented a few highlights above, for lack of space.

2.2 Static Bug Finders
Static bug finding (SBF) arguably begins with type check-

ing built into the compiler. We focus here on supplemen-
tary tools, which are typically targeted at specific kinds
of coding errors, such as buffer overflow, race conditions,
SQL injection vulnerabilities, or cross-site scripting attacks
[11, 7, 28, 9]. Static analysis has typically developed oppor-
tunistically, as researchers discover new classes of defects,
and seek to invent abstraction techniques and algorithms
that can detect these classes of defects efficiently. Analy-
sis tools that can detect various classes of defects, including
memory allocation errors, race conditions, buffer overflows,
and taint-related errors, have been reported in the litera-
ture. The verification imperative is to never falsely certify
a program to be free of some class of bugs. Since bug-
freeness is undecidable in general, verification techniques
over-approximate program behavior to include infeasible be-
havior so long as no feasible behavior is lost. Bug-freeness is
then proven with respect to the over-approximation. A tool
is sound, i.e. meets the verification imperative, when this
proof goes through and the over-approximation is proven
not to lose any feasible behavior. Imprecision is the degree
to which an over-approximation admits infeasible behavior.
Sound static analysis generates false positives when it warns
about infeasible behavior introduced by over-approximation.
Undecidability of nontrivial program properties thus forces
a Hobson’s choice: sound tools have false positives, whereas
unsound tools can have false negatives. And so, without
foreknowledge of which warnings are false and which are
true, developers must examine all the lines of code flagged
in the warnings and hope to find some actual defects.

Evaluating Static Analysis Tools: The evaluation crite-
ria here have parallels with those discussed above for defect
prediction. SBF tools pay off when warnings lead to true
positives, viz., actual defects, and waste effort when warn-
ings are false positives; they incur potential subsequent costs
for missed defects that “leak” out as field defects. Formerly,
papers on static analysis tools reported successful experi-
ences with finding actual defects with their tools. When
open-source developers agreed that reported warnings were
actually bugs, and agreed to fix them, that was considered
a success. Often the sample of test subjects is chosen by
the SBF developers to illustrate the power of the tool in
finding the specific coding errors targeted by the SBF tool,
rather than improving the overall quality of the test subject.

Clearly, not all coding errors lead to defects that actually get
exposed and reported; this issue is typically not of concern
in these evaluations. In terms of CBI, their zonation is line,
and their measure, developer confirmation of a warning. In
addition, these papers typically describe one specific tool,
and evaluate it, rather than comparing the overall power of
several different tools in finding defects.

Our evaluation here is comparative, retrospective and cen-
ters on reported defects: we are asking,

“If developers had actually carefully inspected the
lines warned by SBF tools, how many of the de-
fects subsequently reported (and fixed) in the sys-
tem could potentially have been discovered?”.

We also retrospectively evaluate SBF and DP on an equal
footing, and explore synergies. We focus exclusively on
pattern-matching static bug-finding tools for three reasons:
1) commercial static analysis tools are encumbered by li-
censes that prohibit their study; 2) unencumbered static
analysis tools are prototypes that usually suffer from bit-rot
and are difficult to acquire, build, and run; 3) in particular,
running these tools retrospectively on systems with long his-
tories is especially difficult; and 4) the fact that static analy-
sis tools do not scale well to large systems, which would have
hampered a fair comparison with prediction models, which
do scale, and, in fact, are hungry for masses of data. In
particular, our work focuses on Jlint, FindBugs and pmd.

Closely Related Work: We now briefly review prior work
in evaluating SBF tools. Kim & Ernst [10] analyze history
to determine which warnings programmers tend to fix, to
help prioritize future warnings; they focused on warnings,
not associated defects (if any). Wagner et al [27] evaluate
FindBugs, PMD and QJ Pro with 4 small Java projects (3K-
58K NCSL) by manually inspecting warnings to determine
how many of them were true positives. Our interest is in
much larger systems; we also focus on field defects, and false
negatives with respect to field defects. Rutar et al [23] eval-
uate the overlap between different Java bug finding tools,
without considering their relationship to reported defects.
Thung et al [26] actually do retrospectively evaluate with
field bugs with 3 widely used open-source systems; they
use a case study methodology, manually examining the code
to evaluate the precision and recall of static analysis tools.
Nanda et al [18] also do a retrospective evaluation with re-
spect to actual defects, but their retrospective evaluation
is concerned primarily with null pointer defects; we con-
sider all kinds of reported field defects. Zheng [30] evaluated
the effectiveness of SBF tools in “live” use in an industrial
testing, evaluating what kinds of errors the tools detected.
Marchenko & Abrahamsson [14] report that warning counts
are sometimes correlated (and sometimes anti-correlated!)
with defects. Nagappan & Ball [16] report that static analy-
sis warning density is well-correlated with prerelease defect
density; we are interested to use more typical process-metric-
based prediction models, rather than static analysis tools per
se. Ayewah [3] et al report the results of a survey at Google
on how users and projects use FindBugs. Bessy [4] offers en-
gaging anecdotes on the experience of running CoverityTM

at scale. The defect-finding rate is not reported. None of the
above approaches specifically compare or look for synergies
between DP and SBF .

Our central experimental conceit is evaluation based on
actual, reported and fixed defects; we take the position that

these defects (which after all, are the ones that developers
actually chose to fix) are the most important ones. While
other defects may lurk undetected in the system for years, we
argue that the defects that were actually reported and fixed
are the ones most likely to have influenced the perceived
quality of the system. So we assess the potential value of
DP and SBF based on their potential to guide developers
towards locating these defects as early as possible.

An immediate consequence of this conceit is that our anal-
ysis is post facto; as such, we have to retrospectively predi-
cate how the DP and SBF tools should have been used, to
locate and remove these defects before they were released
into the wild and base our analysis on this predication. We
chose a simple approach. We stipulate that:

1. The tools (either DP or SBF) are run very close to
release date;

2. Lines indicated with warnings by SBF and files pre-
dicted as defective by DP are carefully inspected by
competent personnel; and

3. All defects associated with those lines are discovered
during inspection.

While these simplifications are not entirely realistic, we ar-
gue that they are justifiable, for a retrospective experiment.
First (step 1 above), many processes do indicate that code
inspections occur fairly close to release candidate status; for
simplicity, we run the analysis tools and defect prediction
on the code of a released version. Second (step 2 above),
the cost of inspecting the entire system make it quite rea-
sonable to target inspections at those portions of the system
that are considered highest risk. Finally (step 3), as a first
step toward solving the CBI measurement problem, we as-
sume that all defects in the inspected code are discovered,
even ones unrelated to SBF warnings.

This efficacy assumption is made in published literature
on the evaluation of DP tools, since DP tools indicate the
likely locations of defects based on previous patterns, rather
than on specific etiologies. However, efficacy is typically
not assumed in the evaluation of SBF tools: a line of code
that flagged as containing a race condition may not, in fact,
contain a race condition, but contain instead an unrelated
error. By convention, SBF tool researchers typically give
the SBF tool credit only if the actual error corresponds
to the reported error. To measure the two approaches on
equal footing, we must adopt either DP’s efficacy assump-
tion or SBF ’s more stringent measure. We lack an oracle
for matching warnings to bugs and are operating at a scale
where manually checking warning to bug correspondence is
infeasible, so we make DP’s efficacy assumption. In other
words, we assume that a careful code inspector would in fact
detect any and all errors in the warned lines.

In conclusion, we make a fairness assumption that applies
equally to SBF and DP: if some code is flagged for inspec-
tion, regardless of the reason why, we assume that a compe-
tent and conscientious developer would detect any defect in
that region of code.

2.3 Research Questions
Armed with our solution to CBI, which we explicate in

Section 3.2, we are now ready to compare SBF to DP. First,
we ask how well do the two approaches perform in terms of
effectively identifying code for inspection.

Research Question 1: How do static bug-finding
tools compare with statistical defect prediction with
partial and full credit?

Here, partial and full credit refers to our solution to the
CBI measurement problem, again as described in Section 3.2.
To our knowledge, we are the first to effect this comparison.

Having established a means for comparing the two ap-
proaches we now turn our attention to the search for syner-
gies between the two approaches. First we ask;

Research Question 2: Can statistical defect pre-
diction improve the performance of static bug-finding
tools?

then, “vice versa”, we ask:

Research Question 3: Can static bug-finding tools
improve the performance of statistical defect prediction?

3. EXPERIMENTAL METHODOLOGY
We study five open-source projects from the Apache Soft-

ware Foundation: Lucene, Derby, Wicket, OpenJPA, and
QpidTM, as shown in Table 1. They range in size from 68-
630K NCSL. All are Java projects. There are varying num-
bers of releases for each project. We studied the occurrence
of bugs, and the performance DP and and SBF approaches
at release level intervals. Specifically, as described above,
we assess how well inspections just prior to a release Rn,
guided by DP and/or SBF , would have helped developers
avoid defects discovered after Rn is made available to users.

3.1 Data Gathered
For every project, we gathered version-control information

from git; all projects also use the jira issue tracking sys-
tem. From the jira data, we identified commits that were
bug fixing. We considered any file associated with a bug fix
to be buggy. We used git blame to identify the provenance
of the lines where defects occurred with options for detecting
changes and moves, and whitespace insensitivity. We used
the SZZ [25] approach with this data to identify the source of
the buggy lines. For each release of each project, we collect
the warnings reported by FindBugs, pmd, and Jlint. SBF
tools have different settings that could potentially produce
different sets of warnings. In practice, we found that the
warnings produced FindBugs and Jlint showed no varia-
tion with different settings. For pmd we used all the Java
language rulesets, except for rules having to do with com-
ments, coupling & design (we felt these were higher level
than we wanted to target) and API rules that were not rel-
evant to the systems under evaluation. While pmd, being
source-based, did not require a huge effort to run, Jlint and
FindBugs required builds of multiple versions of our large
subject systems, which required six person-months of effort
to compile all the systems, run the tools over the resulting
class files, and gather warnings.

Perhaps because of the need to map warnings from class
files to source files, we found that Jlint warnings had erro-
neous line numbers. Upon inspection of a sizable randomly
chosen sample, we found too many warnings pointed into

Time

 Line

Released
System

Bug-fix
commitGit Blame

SBF
Warning?

SDP
Prediction?

Release
Date

Time

 Line

fixed
lines

defective
lines

Figure 1: The timeline shows a system version re-

lease date (dashed vertical line) with released versions

of all files in a dashed box. For every bug that is

fixed, post-release, we use git blame to identify the

lines in the released version of the file; we then exam-

ine whether DP predictions or SBF warnings would have

indicated, at release time, that those lines should be in-

spected.

commented regions of code, specifically in the license disclo-
sure region in the first several lines. Because of poor data
quality issues, and because our analysis is at the line-level,
we discarded Jlint from further consideration.
We gathered a wide range of process and product met-

rics and used them all for DP. As reported earlier [2] the
precise learning algorithm is not vital; for simplicity, we just
used logistic regression with this collection of metrics to pre-
dict defect occurrence likelihood. Since the objective here
is to maximize prediction performance, we were not con-
cerned with issues, such as multi-collinearity, and just used
all available process and product metrics at the prediction
problem. For process metrics, we used a large collection, in-
cluding number of committers, number of changes, number
of minor committers, experience of owners, etc.; for product
metrics, we used a large collection of complexity, size, and
object-oriented metrics. We have described and used this
set of metrics in earlier work [20, 19, 21].

To classify files as defective or clean, we use a logistic
regression classifier with these metrics as its input. The
logistic regression classifier uses both code metrics and pro-
cess metrics as gathered from the jira issue tracking system.
To consider a file truly defective, there must be some bug-
fixing commit that includes that file. We train our logistic
regression-based prediction models on the k-th release of a
project, and we test the model on any successive release.

Test Data: We study five open-source projects from the
Apache Software Foundation: Lucene, Derby, Wicket, Open-
JPA, and QpidTM. For each release of each project, we col-
lect the warnings reported by FindBugs, pmd, and Jlint.
All three tools produce warnings on the functionality of

code. Jlint is the only one not to report on style. However,
FindBugs and pmd warn on style. For example, FindBugs

has a warning category specifically for style, and pmd warns
on empty code. While pmd and Jlint report warnings
at a line-level granularity, FindBugs operates differently.
FindBugs reports warnings using a combination of line-
level, method-level, and class-level granularity. For this rea-
son, FindBugs reports significantly more lines, but far fewer
warnings, as compared to pmd and Jlint.

Defect Data: For our test to scale, we need to map defects
to lines so we can then ask when SBF warned lines or files

Table 1: Summary data on projects, ranges of values are shown in columns when applicable, from smallest to largest.

Extremal values may occur in different releases for different covariates.

Project Releases Files NCSL
FindBugs
Warnings

PMD
Warnings

Defects
FindBugs PMD

Rec. Prec. Rec. Prec.

Lucene 7 0.5–1.4K 68–178K 137–300 12–31K 24–83 0.036 0.022 0.17 0.015
Qpid 7 2.3–3.3K 212–342K 32–66 69–80K 74–127 0.00061 0.0017 0.10 0.0056
Wicket 5 2.1–2.7K 138–178K 45–86 23–30K 47–194 0.0070 0.017 0.10 0.0080
Derby 7 2–2.9K 420–630K 1527–1688 140–192K 89–147 0.067 0.0043 0.17 0.0041
OpenJPA 8 1.2–4.7K 152–454K 51–340 62–171K 36–104 0.0034 0.0038 0.26 0.0024

identified by DP intersect those lines. Figure 1 shows our so-
lution to this problem. First, we identify (using jira) all the
big-fixing commits that occurred subsequent to the release
date (note commit marked with X-ed out bug). The lines
that were changed in these commits are considered defective
lines. We use git blame to identify the provenance of the
defective lines. Now any blamed lines that were present in
the released system, shown in the Figure 1, could potentially
have been identified for inspection by SBF warnings, or by
an DP prediction. Blamed lines that are actually identified
with SBF warnings or DP predictions are considered true
positives (or “hits”, to use IR terminology).

3.2 Solving the CBI Problem
In general, we measure the value of both methods on an

equal footing, using area under the cost-effectiveness curve,
AUCEC [2]. This measurement is the area under a lift-chart,
x-axis being proportion of SLOC, and y-axis the proportion
of defects. This is a cost-sensitive and, unlike precision and
recall, non-parametric measure. For these reasons, it has be-
come quite popular recently. However, several complications
arise when applying these measures in our setting, which we
discuss below, along with our solution to the CBI problem.

Zonation: The fact that DP predictions are file-granular,
while SBF warns at a line level makes their direct compar-
ison challenging. A fair comparison dictates that we com-
pare the performance of the two approaches on the same
number of lines. To solve this problem, we introduce some
terminology. Each warning a SBF tool emits warns a pos-
sibly empty set of lines. For each project, we sum all of the
unique, warned lines a SBF tool emits. This sum is our “in-
spection budget” for that project. To measure the “hit” rate
of the warned lines, we inspect the emitting tool’s native
priority order (high priority warnings in smaller files first, in
line order within files) and calculate the AUCEC value. We
call this value AUCECL (AUCEC for warning Lines).

We then train logistic regression normally, using all avail-
able data but restrict the files for which we measure its suc-
cess at defect prediction to be only over a set of files whose
line sum is within a small error tolerance of the inspection
budget. We then ask: “What is logistic regression’s pay-off
given this inspection budget?”. Now the question becomes
choosing on which subset of a project’s files to “spend” this
inspection budget, based on DP predictions. First, we order
all the files by defect likelihood (as predicted by DP), then
select as many files as we can given the inspection budget.
Most of the time, we waste some of the inspection budget
because it is insufficient to allow us to “buy” the next file;
sometimes, this means we return no file. The AUCEC mea-
sure over this collection of files can then be compared with
the AUCECL above on an equal footing.

One could argue that this approach is unfair to DP; some-

times SBF tools warn on as little as 0.4% of the SLOC in
a project; with such a limited line budget, a candidate DP

might only be allowed to recommend a handful of files. On
the other hand, one could argue that, when inspecting SBF

warnings, developers rarely look at just the warned lines and
examine surrounding code, with the result that SBF ’s bud-
get is unfairly low. We acknowledge these arguments, but
claim our procedure defines a reasonable baseline for a long-
overdue comparison; we hope that our dataset will enable
other types of future analysis of the CBI problem.
IMPORTANT AUCEC and AUCECL are the same mea-
sure, calculated the same way (proportional pay off in de-
fects for proportion of lines inspected). We use the different
spellings to remind the reader of the zonation issue at play
here, between the file-level forDP and the line-level for SBF .

CBI Measurement: Defective code sometimes is a few
consecutive lines in a file; sometimes defective code is widely
scattered. What we have access to in the process metadata
is the bug-fixing commit and the lines changed to repair
the defect. Current best-practice in the mining community
is the celebrated “SZZ” [25] approach, which flags the lines
changed in the bug-fix commit as defective lines. We adopt
this approach, while acknowledging its imperfections, and
consider this code to be defective in our analysis.

The overlap, intersection, of defective code with either a
file flagged by DP, or lines warned by SBF may be partial or
complete. Consider a null-pointer warning by an SBF tool,
say FindBugs. Assume there are m lines warned for this
null-pointer a file f in release r. Let’s assume that this same
file f after the same release r has a bug fix, (that changes n
lines in file f) between release r and r + 1. Assume further
that l lines overlap between the m warning lines and the n

defective lines. The CBI measurement problem arises here:
“How much credit should be given to FindBugs?”

An optimistic view, the “optimistic credit” or CreditF
view, is that, if even a single warning line overlaps with a de-
fective line associated with a bug fix (i.e. there is a nonempty
intersection), there is a strong possibility that bug would
have been noticed during inspection and caught before re-
lease. This view suggests that with a single line of overlap,
the warning tool should be given full credit for the bug. A
less optimistic view, “scaled, or partial, credit”, (CreditP)
is that, if x% of the defective lines associated with a bug
overlap a warning tool, then the warning tool gets credit
equivalent to x

100
for that bug.

These measures are not perfect. For example, one can ar-
gue that CreditF will lower the AUCEC scores for DP, since
defective lines occur together in files; DP would get credit
for only full defects, whereas SBF , which can give scattered
warnings at different locations in files, has a greater chance
of “hitting” defective lines. One could also criticize CreditP
as lowering the scores for SBF : as when a single warning

Table 2: Recall between various methods of finding de-

fects. O/L refers to number of defects found in that

category that overlap defects found by logistic.

Project
FindBugs PMD Logistic

Total O/L Total O/L FB PMD

Lucene 41 11 147 87 36 129
Qpid 5 0 218 113 5 167
Wicket 10 0 160 40 0 82
Derby 171 78 461 319 251 476
OpenJPA 8 0 321 264 14 383

on one line (e.g., a failure to check a return value) generates
10 bug-fix lines, thus giving the warning only 0.1 credit for
that bug. This seems unfairly low, if the warning on that
one line was sufficient to incite the programmer to fix that
bug. In this work, we compare DP and SBF using both
the optimistic and scaled approaches, to give two different
perspectives on their relative effectiveness.

Surely, other measures could be defined, with other at-
tendant compromises. In this work, we have highlighted the
importance of the CBI problem, explicated the difficulties
of devising an experiment to solve it, and present the re-
sults of our solution. We have spent a great deal of effort
constructing the dataset; we hope that follow-on work will
leverage our dataset to more readily tackle CBI, bringing
new measures to bear.

4. RESULTS
We now present the results of our comparative study of

two SBF tools, pmd and FindBugs, and DP based on a
logistic model.

Table 1 summarizes our 5 projects. The number of re-
leases vary in each project, from a low of 5 for Wicket to 8 for
OpenJPA. We generally discarded the last (current during
our analysis) release, because defect data is incomplete, and
subject to right-censorship. The systems are of moderate
size, ranging from 68K lines to 630K lines for Derby. The
file count varies from The defect counts per release range
from 24 (Lucene) to almost 200 (Wicket).

Once we gathered the warnings, we removed comment
lines from our partial- and full-credit calculations. The re-
maining lines that are warned in each release are shown Ta-
ble 1. The difference between FindBugs and pmd is in
some cases a couple of orders of magnitude. The sparsity
of warnings from FindBugs is particularly noteworthy in
Qpid and Wicket, and is in fact troublesome for our pur-
poses — with such a limited number of warned lines, our
approach of selecting files from DP to meet this budget is
severely constrained, and thus we might reasonably expect
very poor performance, as we shall see.

The recall and precision numbers are shown in the last
column. These numbers are cumulative over all releases; we
simply count the total number of defects and see how many
are indicated in the warning lines using CreditF . While the
recall numbers and precision numbers are very low, this is
not unexpected. In particular, note that the recall numbers
are as a proportion of actual field defects: it is worthwhile to
avoid even a single field defect, so finding any at all is a good
thing. The low precision numbers are more troublesome —
this indicates that the vast majority of the warnings (as
many as 99.5 in some cases) are perhaps false positives that
have no bearing on defects reported after release. As pointed

out by Zhang & Cheung [29], however, sometimes avoinding
the high cost of defects might compensate for the cost of
inspecting a large number of false positives.

In Table 2, we show the defect counts actually found
by FindBugs (e.g., 41 total across all releases in Lucene)
and the defects found by Logistic regression DP using the
number of lines warned by FindBugs (a total of 36) and
number of lines warned by PMD (total of 129). This ta-
ble also shows the overlap between FindBugs defects and
those found by logistic DP (11 of 41 defects) and the over-
lap between PMD-found defects and logistic DP defects (86
defects). It’s noteworthy that the overlap with DP is gen-
erally higher for FindBugs than for PMD, thus suggesting
that FindBugs and logistic DP are more complementary
than pmd and logistic DP.
Certainly, DP also produce a lot of false alarms, suggest-

ing files for inspection that have no defects. We compare
the two next.

4.1 Inspection Cost Comparison
Figure 2 compares the performance of the FindBugs tool

against performance of logistic DP, for all 5 of our test
projects, over all releases. Each plot point represents the
performance of a given approach, for a given project for a
given release. The lines are not really meaningful or indica-
tive of any real trends, and are just shown for clarity and
aesthetics. The performance here is measured using AUCEC
(for logic DP) and AUCECL (for FindBugs). As explained
in Section 3.2, the measures are fair: they allow the two
approaches an equal inspection budget, and measure their
effectiveness in capturing field defects. We use the differ-
ent names to emphasize that they arise from different tool
granularities. This plot is made using full credit, CreditF
as discussed in Section 3.2: for defects that require mul-
tiple line changes, even a single line overlapping with an
inspected line or file is considered a “hit”. The random is
the AUCECL value (in expectation) of choosing lines uni-
formly at random, and assume that defects are uniformly at
random associated with the lines. In the case of Derby, DP

outperforms FindBugs, while in all the other, FindBugs

generally does better, except for a couple of early releases in
Lucene, release 5 in Qpid, and release 2 in OpenJPA. All in
all, in 21 (out of 29) releases across 5 projects, FindBugs

outperforms logistic DP. In the case of PMD, the situation
is almost reversed (Figure 3: logistic DP dominates uni-
formly in Qpid, Derby, and OpenJPA, in half the releases
in Lucene, and uniformly loses in Wicket. All in all, logistic
DP dominates in 19 out of 29 releases.
In the case of Partial Credit accounting (not shown for

reasons of space) for PMD, Logistic DP almost uniformly
dominates PMD in 27 out of the 29 releases, except for the
first and last release in Qpid. Turning to FindBugs for
Partial Credit accounting, logistic DP again dominates for
Derby, and dominates FindBugs for two releases each in
OpenJPA and Lucene, and one release in Qpid, overall doing
better in only 11 releases out of 29.

For 3 of the projects, Wicket, Qpid, and OpenJPA, only
a very small portion of the system is selected for inspection
by the warning tools (and thus the same line count by DP)
so the performance of both is very low. In some cases a few
defects are “hit” by both tools, but there is no noticeable
consistent difference between the approaches. The core ob-
servation here is that there is no significant discernible differ-

●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

Lucene Wicket OpenJPA Qpid Derby

0.0000

0.0005

0.0010

0.0015

0.0020

0e+00

5e−05

1e−04

0e+00

1e−04

2e−04

3e−04

0e+00

1e−04

2e−04

3e−04

0.005

0.010

0.015

0.020

2 3 4 5 6 7 2 3 4 5 2 4 6 8 2 3 4 5 6 7 2 3 4 5 6 7

Releases

A
U

C
E

C
/A

U
C

E
C

L

● Logistic

FB

Random

Full Credit

Figure 2: Comparing SBF (FindBugs) and DP (logistic regression) prediction using AUCEC as a performance measure
for DP and AUCECL for warnings. In general the performance is not significantly different in our dataset. The two
measures are calculated in a commensurate manner, using CreditF (See Section 3.2).

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Lucene Wicket OpenJPA Qpid Derby

0.01

0.02

0.03

0.04

0.05

0.010

0.015

0.020

0.025

0.030

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.025

0.050

0.075

0.100

0.125

2 3 4 5 6 7 2 3 4 5 2 4 6 8 2 3 4 5 6 7 2 3 4 5 6 7

Releases

A
U

C
E

C
/A

U
C

E
C

L

● Logistic

PMD

Random

Full Credit

Figure 3: Isomorphic to Figure 2, but for pmd.

ence in our dataset between the performance of FindBugs

and logistic DP

Figure 3 shows the same data as Figure 2, but for PMD,
again, we can observe that there is no discernible consistent
difference either way. The above plots are calculated using
the full credit accounting methods, CreditF . We have also
generated plots using partial credit method, CreditP ; how-
ever, we see the same lack of a clear, consistent difference
between the two approaches.

This is a rather unexpected finding. As noted above, SBF
tools such as FindBugs and pmd operate at a line-level gran-
ularity, and only require specific lines that are warned to
be inspected. Specially given partial credit accounting, one
might reasonably expect that DP tools would have the ben-
efit, and thus show a clear advantage over SBF . Subject to
the warnings given in Section 5, this finding emphasizes the
importance of comparing these two important, disparate ap-
proaches to software inspecting targeting on an equal foot-
ing. It also suggests licensing regimes imposed by certain
very successful commercial vendors of SBF tools that inhibit
the publication of such evaluation results are an unjustifiable
barrier to the development of more effective software inspec-
tion practices; certainly, Vendors such as GrammaTech, who
actively support such evaluations, are to be commended.

If this result holds up on replication, it’s rather cheer-
ing. DP tools work well with meta data, and do not require
build integration! With DP tools, we do not need to get
SBF tools for each programming language, and integrate
with build procedures. The barriers to large-scale use of
SBF tools are documented in Bessey et al [4]; however SBF
tools that analyze byte codes do not require separate build
integration, and can be easier to use. In fact, many organiza-

tions, because of process maturity imperatives, have engaged
in substantial metrics-gathering, and have good databases of
bug reports and version control repositories; in such settings,
DP can be readily utilized, without need for expensive soft-
ware licenses or patent royalties: in fact, we just used the
open-source R system in our work.

4.2 Enhancing DP with SBF

We now turn to Research Question 2: can the performance
of DP be improved by using static analysis results? (See
Figure 4.) There is a simple rationale for this pursuit: Prior
work on DP predictions has indicated that process metrics
work really well [19], and in general beat measure of prop-
erties of the product. Generally speaking product metrics,
which measure various properties of code such as coupling,
inheritance etc. are strongly correlated with size (the larger
a module, the more it is coupled, etc.), have been found by
others [6] and us [19]. In a sense, one can view static analy-
sis warnings as assessing a novel kind of property of source
code, perhaps one more strongly allied with defects.

All SBF tools are intentionally designed to locate regions
of code that appear to have properties that prior experience
(or theory) directly indicate the presence of defects. This is
different than a property like coupling, which is thought to
cause defects indirectly, perhaps mediated by HCI phenom-
ena such as the difficulty of code comprehension. Indeed
prior work by Nagappan & Ball [16] suggests that there is a
direct, positive correlation between static analysis warning
density and defect density (although Marchenko & Abra-
hamsson [14] found a negative correlation in some cases). In
conclusion, motivated by prior research and experience, and
our available data, we sought to improve the performance of
DP, using metrics based static analysis warnings.
Our metrics are quite simple: we simply followed the suc-

cessful experience of [16], and added warning counts from
both pmd and FindBugs as an additional metrics into lo-
gistic DP. Whether the correlation or earnings with de-
fects was positive, or negative (!) logistic regression would
discover the relationship, and train a model that can ex-
ploit this information. The results can be seen in Figure 4,
which uses the same general scheme as the earlier figures;
so it is compacted to save space. The y-axis shows the per-
formance measure using the AUCEC measure. The per-

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Lucene Wicket OpenJPA Qpid Derby

0.07

0.08

0.09

0.10

0.11

0.057

0.058

0.059

0.060

0.061

0.08

0.09

0.10

0.11

0.12

0.09

0.10

0.11

0.12

0.13

0.14

0.07

0.08

0.09

0.10

0.11

2 3 4 5 6 7 2 3 4 5 2 4 6 8 2 3 4 5 6 7 2 3 4 5 6 7

Releases

A
U

C
E

C

● Process

Process+Warning

Full Credit

Figure 4: The effect of including SBF warnings as pre-

dictive metrics for DP for 20% NCSL inspection budget.

There appears to be no discernible trend. This figure is

isomorphic to Figure 2, hence its compact form here.

formance of “baseline” process-metrics based DP (logistic
regression in this case) are shown in red. The blue line
shows an “enhanced” DP exploiting a combination of the
traditional process metrics and the warnings counts from
pmd and FindBugs as an additional metric. The specific
plot here is computed using the Optimistic Credit account-
ing method, CreditF . However, accounting under scaled
credit gives similar results. The basic conclusion that can be
drawn here is that there is no clear evidence that warning
counts improve the performance of logistic DP. Sometimes
the enhanced DP performs better, sometimes the baseline
performs better; this phenomenon does not change under
CreditP accounting.

Other approaches to synergizing DP and SBF may pro-
vide better performance. For example traditional product
metrics thus far have only taken limited advantage of se-
mantic properties of code, such as control flow (McCabe
metrics) or data flow (certain cohesion metrics). We be-
lieve that more complex properties, such as the cardinality
of points-to sets or a count of the number of times widening
was applied during an abstract interpretation, that relate
semantic properties to potential difficulties in human com-
prehension or maintainability might yield better results.

4.3 Enhancing SBF with DP

Our final research question concerns whether DP can im-
prove the performance of SBF tools. The intuition here
arises from the abundant evidence that human/process fac-
tors (such as ownership, organizational structure, and geo-
graphical distribution [15, 17, 22]) influence quality. Thus, it
is entirely possible that static bug finders could benefit from
paying attention to such factors when prioritizing warnings
for developers. As an example, warnings on code recently
produced by an inexperienced programmer who is changing
code that he is unfamiliar with are probably likely to be as-
sociated with defects. By contrast, warnings produced on
mature code written by one of the initial creators of a sys-
tem, that has remained unchanged for several releases, are
unlikely to be of any great concern. These phenomena are
very well accounted for in the typical process metrics used
in the DP community in recent years to predict defective
files, with very good reported results. There is a zonation
problem here: DP prioritizes files for inspection; how is to
be used for prioritizing line-level warnings?
Our approach to enhancing SBF with DP, was to or-

der the warnings by the DP-predicted probability of the files
within which the warned lines occur. This gives us a partic-
ular ordering of the warned lines. Using both our optimistic

and scaled accounting, we can scan these lines in this or-
der, assigning credit for any defective lines that are encoun-
tered. This gives us an AUCECL score for this enhanced
SBF warning order. Now what should we compare this
with? Clearly, one good candidate the the AUCECL score
of a standard, priority-based ordering that is produced by
FindBugs, that we use in the first research question above.
However, there are many possible based orderings of defects;
in fact, programmers may have different preferred orders on
how they choose to inspect the warnings. It would be in-
teresting to get a robust estimate of how well our ordering
enhanced by DP, and the “native” ordering produced by the
built-in prioritization of the tool compares with the entire
population of such orderings.

For this purpose, we generate 100 random re-orderings of
the warnings produced by pmd and FindBugs, and for each
one, we calculate the AUCECL. This gives an empirical dis-
tribution over a large sample of orderings, which then allows
us to estimate how well the DP-enhanced ordering compares
with the overall population of orderings. Figure 5 shows the
results under partial credit accounting. There are separate
panels for each projects, and each is broken up by release.
For each release, we show a box plot of the AUCECL val-
ues for 100 random orderings, a blue triangle for the native
priority warning, and a red dot for the logistic (p-val, or
predicted probability of defects value) based ordering. The
lines are shown for visual clarity, and have no semantics.
Upper row is FindBugs, and lower row is pmd. Under this
accounting, (after correcting the p-values for false discov-
ery using Benjami-Hochberg procedure) the logistic (p-val)
ordering dominates (p < 0.01) in 25 of the 29 releases for
PMD (over all different projects), and 19 of the 29 releases
for FindBugs. It also dominates the native priority order-
ing most cases. In fact, logistic-based ordering dominates in
virtually every release of virtually every project except for
Wicket, just because wicket has very few warning lines, thus
constraining the line-budget for DP. Thus yielding a simple
lesson: under partial accounting, best to order the warnings
using logistic DP predicted probability of defects!

Under full accounting (which we omit for space reasons),
p-val based ordering doesn’t fare well at all. It significantly
beats the random orderings (p < 0.01) after correction only
in 5 releases (2 in OpenJPA and 4 in Qpid). As explained
earlier, this is not surprising—when bugs span multiple lines,
all lines tend to occur together in a file, and scattershot SBF
warnings that happen to hit even a single one of those lines
will get full credit for that bug; whereas DP will select full
files and get only a single credit for a multi-line bug only
after the entire set of lines for that file is accounted for.

Finally, there is a very interesting observation: the logis-
tic based ordering frequently outperforms the native prior-
ity tool-based ordering, across project and release, for both
tools. In the case of pmd only for 2 out of the 29 releases
under Full Credit (1 for the partial) the native ordering is
better than logistic ordering; for FindBugs, the native or-
dering dominates only 8 cases under partial credit (7 full). A
two-sample Wilcoxon test rejects the null hypothesis (with
alternative hypothesis set to logistic > native) after correc-
tion (p < 0.01) in all cases, except for partial credit under
FindBugs (p = 0.02). This suggests that one could prefer
logistic-based ordering to the native ordering. However, one
should interpret the p-values prudently; an abundance of
caution suggests that releases are not necessarily indepen-

Derby

●●●●

●●●●

●

●

●

●

●

●

●●●●

●●●●

●●●●

●●●●●●●●●●●●

●
●

●

●

●

●

0.002

0.004

0.006

0.015

0.020

0.025

0.030

F
B

P
M

D

2 4 6

Lucene

●●●●

●●●●

●●●●

●

●

●

●

●

●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●

●

●

●

●

●

0.00025

0.00050

0.00075

0.005

0.010

0.015

0.020

F
B

P
M

D

2 4 6

OpenJPA

●

●

●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●

0e+00

1e−05

2e−05

3e−05

4e−05

0.02

0.03

0.04

0.05

0.06

F
B

P
M

D

2 4 6 8

Qpid

●●●●

●

●

●

●

●

●

●●●●●●●●

●●●●

●

●

●

●

●

●

0e+00

2e−06

4e−06

6e−06

8e−06

0.005

0.010

0.015

0.020

0.025

F
B

P
M

D

2 4 6

Wicket

●●●●

●

●

●

●

●●●●

●●●●●●●●

●

●

●

●

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

0.004

0.006

0.008

0.010

F
B

P
M

D

2 4

Partial Credit

Release

A
U

C
E

C
L

● Pval

Priority

Figure 5: The effect of ordering SBF warnings using DP predictions, compared to 100 random orderings of SBF

warnings. The boxplot shows the 100 orderings. The red line (with circles) is warnings ordered by logistic DP

prediction of defect probability (p-val) and the blue triangles are the native priority ordering. Partial credit scoring is

used.

dent samples.

5. THREATS TO VALIDITY
If developers were in fact using SBF tools during de-

velopment, then it is possible that warnings (and perhaps
associated bugs) were fixed before release, and thus fewer
post-release defects would be associated with warnings. In
Lucene and Wicket, we found no evidence of systematic
SBF use. In the case of Derby, a developer list message re-
ported that contributors from Oracle may have been using
FindBugs. In the case of Qpid, we found that a FindBugs
task was added Sept 17, 2010, and in OpenJPA, on Jun 14,
2010. However, when we examined the history of warning
counts in Derby, Wicket, and OpenJPA, we found no sig-
nificant evidence of warning repair; nor did we find any sig-
nificant preferential reduction in high-priority warnings, or
ones more ominous-sounding (e.g., MALICIOUS CODE or
CORRECTNESS being). In addition, we found no evidence
in the email archives of any these projects suggesting a sys-
tematic adoption of SBF tools. These observations mitigate
this particular threat to our findings.

Our work may not be generalizable. We have chosen 5
distinct projects of different sizes and application domains.
We However, all are Java-based. Our two tools, pmd and
FindBugs are also therefore Java based. Both are heuristic
bug-finders, although FindBugs does employ some static
analysis. FindBugs requires compiled Java code, and thus
entailed tremendous effort, to compile our 5 systems; older
versions presented special challenges, such as finding older
Java SDK versions. pmd was relatively easier, as it works on
source code. Ideally, this experiment should be repeated for
more projects in more different languages, with other tools.
In this case, since we making the defect data publicly avail-
able, it may help other researchers try other Java-based SBF

tools. Although we use one DP method (logistic regression)
using primarily process metrics, prior reports [1, 19] sug-
gest that this approach a) would be difficult to beat and
b) easy to repeat in a new setting. Our measures may be
mis-targeted. As explained, we report performance under
the full credit and partial credit assumptions. As discussed

in Section 3.2, there are arguments against these measures,
and others could be defined. In addition, AUCEC per se has
been criticized for ignoring the cost of false negatives (missed
defects [29]). We hope that our making this hard-won warn-
ings & defect data available will encourage repetition of this
trial with other measures.

6. CONCLUSION AND FUTURE WORK
Defect prediction and bug finders target the same prob-

lem: selecting a subset of source code on which to expend
limited quality control budgets. We are the first to compare
their performance. We address the comparability of buggi-
ness identification problem, whose tackling cuts to the core
of software engineering: knowing when one outperforms the
other optimizes resource allocation and promises to guide
the search for useful synergies in service of software engi-
neering’s core aim to produce better cheaper software faster.

Our comparison is based on the AUCEC cost-benefit met-
ric. We find that statistical defect prediction appears to do
better than pmd, a widely used tool, under both partial and
full credit accounting in most cases. However, DP does not
fare as well against FindBugs, generally doing worse until
full credit accounting, and not as badly under partial credit
accounting. Second, we find that using SBF warnings as an
additional metric does not significantly improve statistical
prediction. Last but not least, we find that ordering SBF

warnings based on DP appears to improve upon the native
SBF priority levels in a majority of cases. While this re-
sult appears significant on a two-sample statistical test, we
urge caution, since releases are not necessarily independent
samples. Comparisons such as these are key to promoting
engineering discipline in the selection of quality control tech-
niques, and we invite others use our dataset for further ex-
periments. This material is based upon work supported by
the National Science Fondation under Grant No. 0974703.

References

[1] E. Arisholm, L. C. Briand, and M. Fuglerud. Data
mining techniques for building fault-proneness models

in telecom java software. In ISSRE, pages 215–224.
IEEE Computer Society, 2007.

[2] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of meth-
ods to build and evaluate fault prediction models. JSS,
83(1):2–17, 2010.

[3] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler,
J. Penix, and W. Pugh. Using static analysis to find
bugs. IEEE Software, 25(5):22–29, 2008.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. Engler. A few billion lines of code later: using static
analysis to find bugs in the real world. Communications
of the ACM, 53(2):66–75, 2010.

[5] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: a benchmark and an ex-
tensive comparison. Empirical Software Engineering,
17(4-5):531–577, 2012.

[6] K. El Emam, S. Benlarbi, N. Goel, and S. Rai. The
confounding effect of class size on the validity of object-
oriented metrics. TSE, 27(7):630–650, 2001.

[7] D. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. In SOSP,
volume 37, pages 237–252. ACM, 2003.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for
java. In ACM Sigplan Notices, volume 37, pages 234–
245. ACM, 2002.

[9] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting web application vulnerabili-
ties. In SP, pages 6–pp. IEEE, 2006.

[10] S. Kim and M. D. Ernst. Which warnings should i fix
first? In FSE, pages 45–54. ACM, 2007.

[11] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In USENIX Security
Symposium, pages 177–190. Washington DC, 2001.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
TSE, 34(4):485–496, July 2008.

[13] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J.
Whitehead Jr. Does bug prediction support human de-
velopers? findings from a google case study. In ICSE,
pages 372–381. IEEE Press, 2013.

[14] A. Marchenko and P. Abrahamsson. Predicting soft-
ware defect density: a case study on automated static
code analysis. In Agile Processes in Software En-
gineering and Extreme Programming, pages 137–140.
Springer, 2007.

[15] A. Meneely and L. A. Williams. Secure open source
collaboration: an empirical study of linus’ law. In E. Al-
Shaer, S. Jha, and A. D. Keromytis, editors, CCS, pages

453–462. ACM, 2009.

[16] N. Nagappan and T. Ball. Static analysis tools as early
indicators of pre-release defect density. In ICSE, pages
580–586. ACM, 2005.

[17] N. Nagappan, B. Murphy, and V. Basili. The influ-
ence of organizational structure on software quality: an
empirical case study. In ICSE, pages 521–530. ACM,
2008.

[18] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra,
D. Schmidt, and P. Balachandran. Making defect-
finding tools work for you. In ICSE, pages 99–108.
ACM, 2010.

[19] F. Rahman and P. Devanbu. How, and why, process
metrics are better. In ICSE, pages 432–441. IEEE
Press, 2013.

[20] F. Rahman, D. Posnett, and P. Devanbu. Recalling the
“imprecision”of cross-project defect prediction. In FSE.
ACM, 2012.

[21] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu.
Sample size vs. bias in defect prediction. In FSE, 2013.

[22] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D.
Herbsleb. Configuring global software teams: a multi-
company analysis of project productivity, quality, and
profits. In ICSE, pages 261–270. ACM, 2011.

[23] N. Rutar, C. B. Almazan, and J. S. Foster. A com-
parison of bug finding tools for java. In ISSRE, pages
245–256. IEEE, 2004.

[24] A. September. IEEE standard glossary of software en-
gineering terminology, 1990.

[25] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In ACM sigsoft software engi-
neering notes, volume 30, pages 1–5. ACM, 2005.

[26] F. Thung, D. Lo, L. Jiang, F. Rahman, P. T. Devanbu,
et al. To what extent could we detect field defects? an
empirical study of false negatives in static bug finding
tools. In ASE, pages 50–59. ACM, 2012.

[27] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger.
Comparing bug finding tools with reviews and tests.
In Testing of Communicating Systems, pages 40–55.
Springer, 2005.

[28] G. Wassermann and Z. Su. Sound and precise analy-
sis of web applications for injection vulnerabilities. In
ACM Sigplan Notices, volume 42, pages 32–41. ACM,
2007.

[29] H. Zhang and S. Cheung. A cost-effectiveness criterion
for applying software defect prediction models. In FSE,
pages 643–646. ACM, 2013.

[30] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P.
Hudepohl, and M. A. Vouk. On the value of static
analysis for fault detection in software. TSE, 32(4):240–
253, 2006.

	Introduction
	Background
	Statistical Defect Prediction
	Static Bug Finders
	Research Questions

	Experimental Methodology
	Data Gathered
	Solving the CBI Problem

	results
	Inspection Cost Comparison
	Enhancing DP with SBF
	Enhancing SBF with DP

	Threats to validity
	Conclusion and Future Work

