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ABSTRACT
Time-traveling in the execution history of a program during de-
bugging enables a developer to precisely track and understand the
sequence of statements and program values leading to an error. To
provide this functionality to real world developers, we embarked on
a two year journey to create a production quality time-traveling de-
bugger in Microsoft’s open-source ChakraCore JavaScript engine
and the popular Node.js application framework.

CCS Concepts
•Software and its engineering → Software testing and debug-
ging;
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1. INTRODUCTION
Modern integrated development environments (IDEs) provide a

range of tools for setting breakpoints, examining program state, and
manually logging execution. These features enable developers to
quickly track down localized bugs, provided all of the relevant val-
ues remain on the call-stack and the root cause of the failure is
close to where the error manifests itself. However, they provide
only rudimentary support to iteratively track down more difficult
errors: developers often resort to repeatedly setting breakpoints and
rerunning the program. The dynamic nature of JavaScript and the
extensive use of callbacks/promises in Node.js can make this pro-
cess especially tedious and time-consuming.

Time-traveling debuggers offer an attractive alternative to the it-
erative process of debugging nontrivial errors using a traditional
debugger. Instead of requiring developers to stop debugging, set a
new breakpoint, and then reproduce the desired execution to hit that
breakpoint, time-traveling debuggers allow a developer to simply
press a button to step-back in a program’s execution. We present
JARDIS, a time-traveling debugger for JavaScript; it provides a rich
set of functionality for recording and navigating the execution his-
tory of a program including:

Figure 1: Visual Studio Code with extra time-travel functional-
ity (Step-Back button in top action bar) at a breakpoint.

• Options for both using time-travel during local debugging
and for recording a trace in production for postmortem de-
bugging or other analysis (Section 2.1).
• Reverse-Step Local and Dynamic operations (Section 2.2)

that allow the developer to step-back in time to the previously
executed statement in the current function or to step-back in
time to the previously executed statement in any frame in-
cluding exception throws or callee returns.
• Reverse to Callback Origin operation (Section 2.3) that re-

verses time to the line that registered the currently executing
callback e.g. the call to setTimeout(...) where the cur-
rently executing function was registered.

In combination with the low-overhead imposed by JARDIS (un-
der 2% runtime increase in Section 4), these features provide a
system that is suitable for use as both the default debugger for
Node.js applications and for collecting execution histories from in-
production deployments. Thus, JARDIS represents a major advance
in state of the art debugging tools and provides an enabling technol-
ogy for related research areas including interrogative debugging,
automated fault localization, and performance profiling.

2. FEATURES
JARDIS provides a range of features for debugging programs us-

ing JavaScript/Node.js and improves developer productivity in both
local and postmortem debugging scenarios1.

2.1 Local Debugging and Offline Recording
JARDIS starts by augmenting the conventional graphical debug-

ger, including its variable and call stack displays, breakpoints, and
single-stepping, with the ability to reverse step through code exe-
cution via its Reverse-Step button as shown in Figure 1.
1A video demo of JARDIS is available at [12].
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Figure 2: Remote recording with a telemetry service, followed
by postmortem debugging at full fidelity.

JARDIS also supports postmortem debugging, as shown in the
workflow in Figure 2. In this scenario, the developer runs their
application under JARDIS’s record mode when deployed to their
users, given their consent. When an error occurs, the execution
trace is sent to the specified location for debugging later. The col-
lected trace has sufficient information to replay the execution of
the program exactly, including any non-determinism, and show the
value of any JavaScript program variable that the developer might
be interested in. Thus, the debugging experience is the same as if
the developer had a debugger attached to the remote Node.js pro-
cess when the trace was collected.

To record the trace, the developer simply invokes Node with an
additional command line flag, -TTRecord:[uri], where the uri
parameter indicates the location (a file or remote server) to save the
trace. By default, we continuously record approximately the most
recent 2–4 seconds of execution in a ring buffer and save the data if
an unhandled exception occurs, a call to process.exit is made,
or a dump is explicitly requested by the the application. All of these
parameters can be adjusted as desired.

Later, the developer can load and debug the serialized trace by
invoking the replay host with TTDebugHost [uri] and attaching
a debugger. In Figure 2, Visual Studio Code [23] is configured to
do this and execute the code/trace to the point where the exception
is thrown. When this point is reached, the debugging experience
is virtually identical to the standard local debugging scenario: the
developer can inspect any value of interest, view the stack frame,
set breakpoints, step forward/back in the code, and even evaluate
expressions in the watch window.

2.2 Reverse-Step Operations
The first type of reverse-step operation, and most commonly use-

ful operation, provided by the JARDIS tool is a reverse-step (rs) to
the previously executed line in the current call frame. This is sim-
ply the reverse version of the forward step provided by existing
graphical and command line debuggers. The next type of reverse
operation provided by JARDIS is reverse-step dynamic (rsd) which
acts as the reverse version of step-into operations in existing debug-
gers. This operation steps-back in time to the previously executed
statement in any frame.

To illustrate the various use cases for these operations and how
they differ, consider the code in Figure 3. If the current breakpoint
is at line 14, labeled bp1, then the rsd operation reverse-executes
to the return statement of the previously called method (line 2 in
bar) while the rs operation reverse-executes to line 13. When the
current position is the result of an exception, line 10 labeled bp2,
the rsd operation reverse-executes to the throwing statement at line
2 in bar, while the rs operation reverse-executes to line 8. In all
other cases, the behavior of rsd and rs is the same.

1 f u n c t i o n b a r ( x ) {
2 re turn x . g ;
3 }
4
5 f u n c t i o n foo ( ) {
6 var v = undef ined ;
7 t r y
8 { b a r ( v ) ; }
9 ca tch ( e )

10 { /*bp2*/ c o n s o l e . l o g (’fail’ + e ) ; }
11 }
12
13 b a r ( { g : 10 } ) ;
14 /*bp1*/ c o n s o l e . l o g (’success’ ) ;
15
16 s e t T i m e o u t ( foo , 10) ;

Figure 3: Reverse-Step (rs) vs. Reverse-Step Dynamic (rsd).

2.3 Callback Reverse to Origin
JavaScript and Node.js code use callbacks (also called promises

or continuations) extensively. Debugging this code can be chal-
lenging as the control flow is difficult to reconstruct: code regis-
tered at one point in a program’s execution is invoked by the event
loop later, sometimes much later. When a developer is at a break-
point in some callback code, they may not, therefore, know where
or why this callback code was registered, what the program state
was at that time, or why the callback was was eventually invoked.

To address this challenge, JARDIS provides its reverse to callback
origin (rcbo) operation. This operation allows the developer to
travel back from the currently executing callback to the point in
time when the callback was registered. To illustrate this operation,
consider the code in Figure 3. If the current breakpoint is at line
10, labeled bp2, then the rcbo operation reverse-executes to the
setTimeout on line 16 where the callback to foo was registered.

3. IMPLEMENTATION
JARDIS is part of Microsoft’s ChakraCore JavaScript engine [7]

and a fork of the Node.js runtime environment [18]. The overall
system design is a record-replay-snapshot architecture [2, 10, 16].
The snapshot algorithm is based on [2] with the record-replay work
done in the JsRT hosting API layer [14] that Node.js uses to in-
terface with the JavaScript runtime. The snapshot code and the
record-replay code involves approximately 20 kloc in the Chakra-
Core codebase. We added less than 100 lines of code to the Node.js
codebase. Source code is available online [7, 18].

As Figure 4 shows, a Node.js process consists of the Chakra-
Core JavaScript engine and the Node.js runtime hosting environ-
ment. The ChakraCore engine executes the application JavaScript
code, while the Node host manages all interactions with the envi-
ronment including, file and network IO, callback scheduling, and
OS resources. The Node host interacts with the ChakraCore engine
via the JsRT API, which allows the Node host to create/inspect ob-
jects, invoke JavaScript functions, and create JavaScript function
wrappers that call back into native host code when invoked.

3.1 Record and Replay
To record the full range of events needed to replay the execu-

tion of the JavaScript component of the program, we added logging
code to three subsystems in the Node/ChakraCore codebases:

1. The JsRT API implementations. For each API, we add code
to record the kind of operation, the argument parameters,
and the return value. At replay time, JARDIS uses them to
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Figure 4: Overview of the Node.js/ChakraCore runtime and
the architecture of JARDIS in the system.

re-execute the needed actions in the ChakraCore engine e.g.
loading JavaScript code from files, calling JavaScript func-
tions, or creating/modifying JavaScript objects.

2. Internal ChakraCore code paths that involve non-deterministic
data, such as getting the current Date/Time, the invocation of
external native code, or where enforcing deterministic exe-
cution was impractical. Property enumeration is an example
where forcing a deterministic order is impractical.

3. Node host actions that bypass the JsRT API and directly
modify BYTE∗ buffers for efficiency, as well as cases where
the host has diagnostic information that ChakraCore cannot
access, such as event loop status or callback dispatch depen-
dencies (Section 3.3).

When invoked, the replay host TTDebugHost loads the speci-
fied log file, finds the first snapshot in the log, inflates the program
state from this snapshot, and then begins replaying events from the
log until hitting a breakpoint. Some of the events in the log cor-
respond to external actions (event categories 1 and 3) and are di-
rectly replayed by the host. For example, we may have recorded
that the Node runtime accessed a property of an object, created
an ArrayBuffer, and then directly initialized the contents of the
buffer with data from the network. To replay the original execu-
tion correctly, the replay host must explicitly simulate all of these
actions. Other events in the log, event category 2, are replayed
implicitly by the ChakraCore engine during its execution. During
the original run, for example, the JavaScript Date.now function
records its result into the log; at replay time, the ChakraCore en-
gine simply reads this value from the log and returns it.

To allocate and record each event with a very low overhead, we
use a bump-pointer allocator with fixed-size 40 byte entries and
the occasional entries that need more space can allocate a second
buffer. As JavaScript extensively dynamically loads and evaluates
code, JARDIS’s logger maintains a second log to record the URI
origin of code, whether the code was loaded from a file, via eval,
or new Function, and the code’s source and associated internal
sourceId information.

3.2 Snapshots
JARDIS takes snapshots of the program state at regular intervals.

These snapshots allow a developer to jump between points in time
in the recording, avoiding replay from the start of the log, and al-
low a developer to start a recording at any point during a program’s
execution. The snapshot extraction is based on Barr and Marron’s
work [2] with modifications needed to support unique features of
the JavaScript object model, such as support for dynamically mod-
ifiable type layouts and the range of specialized representations for
JavaScript builtin types.

Node.js is built around an event loop that dispatches JavaScript
actions from internal worklists. This loop is an ideal point for per-

SnapShot : {URI, Rnd, Roots, Code, Types, Vals, Objs}
URI : URI of root .js file
Rnd : Seed for PNRG — obviates recording each value

Roots : [vId, ...]
Code : [codeId, ...]

Types : [{typeId, protoId, jsKind, flags, [SlotInfo ...]}, ...]
SlotInfo : {pid, attrib}

Vals : [{vId, jsKind, data}, ...]
Objs : [{vId, typeId, Slots, ObjData ....}, ...]
Slots : Array of void*, interpreted using tag bits

ObjData : Pointer to data specific to a builtin type

Figure 5: Snapshot Representation.

forming snapshots. In it, the JavaScript execution stack is empty,
reducing the size of the program state we need to capture and elim-
inating the need to snapshot call-frames and associated invocation
data. Further, we can check if additional work is pending and delay
taking a snapshot or, if the event loop is idling, preferentially take
a snapshot early.

Figure 5 shows the textual snapshot representation. The snapshot
starts with standard information. The URI for the root code file and
the value of the PNRG seed at snapshot time. The Roots are a list
of vId values which are simply unique integer identifiers for each
JavaScript root in the heap. Next is the Code list which contains
codeId values that map to code load information in the log and
indicates the code loaded into the program at this point.

The next set of components in the snapshot describe the layouts
of the rest of the data in the snapshot. The Types component pro-
vides information on the associated prototype (protoId), the enum
value (jsKind) indicates if this is a special builtin type and which
one, flags for frozen/etc. info, and a list of SlotInfo entries. Each
SlotInfo contains information on a single entry in a slot array that
describes where each propertyId maps to in the object’s slot array
and an attribute value containing enumerable/etc. information.

Finally, we have the actual data from the program. The Vals list
contains information for all the primitive values including strings,
numbers, the special null/undefined values, etc. These values
have the enum value jsKind and void* data that is interpreted as
needed for each of the primitive jsKind tags. The objects refer to a
typeId that gives us a Type entry that is used to interpret the Slots
array and the ObjData pointer. The Slots array is an array of void*
pointers which are interpreted via tag bits that indicate if the values
are tagged integers (and can be cast directly) or pointer-based val-
ues that we treat as vId values (and can lookup in the snapshot to
find the corresponding data).

3.3 Callback Dependence Tracking
To implement the reverse to callback origin (rcbo) operation,

we require three pieces of information: 1) when callbacks are reg-
istered, 2) when they are dispatched, and 3) if they are canceled at
some point. In the Node.js architecture, the runtime host manages
this information in its internal event loops where the ChakraCore
cannot directly inspect it. Thus, we modified the APIs that register
callbacks to wrap and tag the registered callback function with the
current index in the event log idxr. When this wrapped function is
dispatched from an event loop, we record the register index idxr in
the event log entry for the function invocation. When a developer
uses the rcbo operation, we simply scan the event log to find the
enclosing function invocation event log entry, get the idxr value,
and then time travel back to that point in the execution.
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Table 1: Performance overheads when running JARDIS in record mode. Process Size is the baseline memory used by the Node.js
process without JARDIS. The Time and Space overheads are the increase in runtime and memory seen when running the benchmark
with JARDIS set to recording mode; the † symbol marks when the recording and baseline execution times were indistinguishable.
Log Size is the size of the compressed (2–4 second) log when written to disk after the run completes.

Program Code Process Size Time Overhead Memory Overhead Log Size

gbemu 11 kloc 45MB 2% 56% 7.3MB
navier 0.5 kloc 17MB 1% 71% 6.3MB
raytrace 1 kloc 60MB 1% 27% 4.5MB

dash 18 kloc 12MB † 83% 5.2MB
tasks 96 kloc 73MB 2% 74% 8.9MB
twitter 41 kloc 42MB † 55% 7.8MB

4. EVALUATION
We focus our evaluation on the performance overhead when run-

ning a Node.js application in record mode. Our benchmarks consist
of the compute/memory intensive Octane [19] workloads gbemu,
navier, and raytrace modified to run in Node.js as well as more tra-
ditional Node.js workloads of a code status dashdoard (dash) [9], a
task tracking application (tasks) [21], and a twitter bot (twit).

We configured Node.js to take snapshots approximately every 2
seconds and keep the most recent 2 snapshots to retain approxi-
mately the last 2–4 seconds of execution. We setup all the bench-
marks to run for 4–8 seconds to reduce measurement noise and
ensure we fill the TTD log. We ran our experiments 10 times (with
highest/lowest values discarded) on a Intel Sandy Bridge class Xeon
processor at 3.6GHz with 16GB of RAM and a SSD drive.

Table 1 shows that, for both the compute intensive and the appli-
cation based benchmarks, the recording overheads are exception-
ally small. For all benchmarks, the runtime overheads are under
2%. For two of the application benchmarks, the runtimes for the
baseline version of Node and JARDIS with recording were indistin-
guishable. For the application benchmarks, the Node worklist was
frequently empty during execution allowing JARDIS to take snap-
shots during the idle period. Even in the compute bound bench-
marks, where there are no idle periods, the snapshot cost is a very
small part of the overall runtime. Despite creating 1000’s of events
in some benchmarks, the cost to record each action — a bump al-
location and writing a few fields — is trivial compared to the work
to dispatch and execute the action.

The memory overheads in Table 1 are larger, ranging from 27%
to 83%, due to the fact that the log and uncompressed snapshots
are kept in memory. Despite keeping up to 2 snapshots of the entire
JavaScript program state in the log at a time, the memory overhead
is less than 100% for all our benchmarks, indicating that the live
object based snapshots are substantially smaller than what a naive
process memory page snapshot would produce. The Log Size col-
umn shows that these snapshots and the log compress remarkably
well, ranging from 4.5MB to 8.9MB.

5. RELATED WORK
Work on time-travel debugging has a long history and a wide

variety of methods for implementing the functionality have been
proposed. The most straight-forward mechanism for implementing
a TTD system is to only trace events in the program and, usually, to
replay from the start of execution based on the logged data. Current
systems employing this approach include [3, 5, 8, 11]. An alterna-
tive to tracing the entire program execution is to intermittently take
snapshots of the program state and then, on demand, restore, and
replay as done in this work and others [2, 10, 16, 20, 22, 24].

Previous work has employed call-stack stitching [6] (or long
stack traces [4]) to ease debugging asynchronous calls. This ap-
proach copies the call-stack when a callback is registered and ap-
pends it to the call-stack when the call-back is invoked. Unfortu-
nately, copying a call-stack is expensive and can keep references
alive. Further, the copies are also shallow so heap allocated val-
ues may be modified after the copy is made leaving the debugger
information in an inconsistent state.

A number of research areas depend on, or would benefit from
the availability of, a low cost method for obtaining the execution
history for a program [1, 13, 15, 17]. The cost of producing the
history, at the needed level of detail, is a limiting factor in the ap-
plicability of all these techniques. Thus, the ability to efficiently
record snippets of a program’s execution, and replay offline later
while tracking exactly the required information, is an enabler for
further work in these areas.

6. CONCLUSION
As shown, the open source JARDIS tool provides a rich set of

functionality for recording, then inspecting and navigating the exe-
cution history of a program in a debugger. Additionally, JARDIS’s
extremely low recording overhead represents a major opportunity
for research and tools that rely on collecting execution histories
from in-production deployments. JARDIS represents a major ad-
vance in state of the art debugging tools and is an enabling tech-
nology for research areas including interrogative debugging, auto-
mated fault localization, and postmortem diagnostics.
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