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Abstract—JavaScript is growing explosively and is now used in
large mature projects even outside the web domain. JavaScript is
also a dynamically typed language for which static type systems,
notably Facebook’s Flow and Microsoft’s TypeScript, have been
written. What benefits do these static type systems provide?

Leveraging JavaScript project histories, we select a fixed bug
and check out the code just prior to the fix. We manually add
type annotations to the buggy code and test whether Flow and
TypeScript report an error on the buggy code, thereby possibly
prompting a developer to fix the bug before its public release. We
then report the proportion of bugs on which these type systems
reported an error.

Evaluating static type systems against public bugs, which
have survived testing and review, is conservative: it understates
their effectiveness at detecting bugs during private development,
not to mention their other benefits such as facilitating code
search/completion and serving as documentation. Despite this
uneven playing field, our central finding is that both static type
systems find an important percentage of public bugs: both Flow
0.30 and TypeScript 2.0 successfully detect 15%!

Keywords-JavaScript; static type systems; Flow; TypeScript;
mining software repositories;

I. INTRODUCTION

In programming languages, a type system guarantees that
programs compute with expected values. Broadly, two classes
of type systems exist — static and dynamic. Static type systems
perform type checking at compile-time, while dynamic type
systems distinguish types at run-time. The cost and benefits
of choosing one over the other are hotly debated [1, 2, 3, 4].
Proponents of static typing argue that it detects bugs before
execution, increases run-time efficiency, improves program
understanding, and enables compiler optimization [5, 6]. Dy-
namic typing, its advocates claim, is well-suited for prototyping,
since it allows a developer to quickly write code that works
on a handful of examples without the cost of adding type
annotations. Dynamic type systems do not force developers
to make an explicit upfront commitment to constraining the
values an expression can consume or produce, which facilitates
the writing of reflective, adaptive code.

JavaScript, a dynamically typed language, is increasing
in popularity and importance. Indeed, it is often called the
assembly of the web [7]; it is the core language of many long-
running projects with public version control history. Three
companies have viewed static typing as important enough

to invest in static type systems for JavaScript: first Google
released Closure1, then Microsoft published TypeScript2, and
most recently Facebook announced Flow3. What impact do
these static type systems have on code quality? More concretely,
how many bugs could they have reported to developers?

The fact that long-running JavaScript projects have extensive
version histories, coupled with the existence of static type
systems that support gradual typing and can be applied to
JavaScript programs with few modifications, enables us to
under-approximately quantify the beneficial impact of static
type systems on code quality. We measure the benefit in terms
of the proportion of bugs that were checked into a source code
repository that might not have been if the committer were
using a static type system that reported an error on the bug.

In this experiment, we sample public software projects, check
out a historical version of the codebase known to contain a bug,
and add type annotations. We then run a static type checker on
the altered, annotated version to determine if the type checker
errors on the bug, possibly triggering a developer to fix the bug.
Unlike a controlled human subject experiment, our experiment
studies the effect of annotations on bugs in real-world code-
bases not the human annotator, just as surgery trials seek to
draw conclusions about the surgeries, not the surgeons [8],
despite our reliance on human annotation. More generally,
decision makers can use this “what-if” style of experimentation
on software histories to help decide whether to adopt new tools
and processes, like static type systems.

In this study, we empirically quantify how much static type
systems improve software quality. This is measured against
bugs that are public, actually checked in and visible to other
developers, potentially impacting them; public bugs notably
include field bugs, which impact users. We consider public bugs
because they are observable in software repository histories.
Public bugs are more likely to be errors understanding the
specification because they are usually tested and reviewed,
and, in the case of field bugs, deployed. Thus, this experiment
under-approximates static type systems’ positive impact on
software quality, especially when one considers all their other
potential benefits on documentation, program performance,
code completion, and code navigation.

1https://developers.google.com/closure/compiler/
2http://www.typescriptlang.org/
3http://flowtype.org/978-1-4799-3360-0/14/$31.00 ©2017 IEEE



The core contribution of this work is to quantify the public
bugs that static type systems detect and could have prevented:
15% for both Flow 0.30 and TypeScript 2.0, on average. Our
experimentation artefacts are available at:

http://ttendency.cs.ucl.ac.uk/projects/type_study/.

II. PROBLEM DEFINITION

Here, we define the bugs that the use of a type system might
have prevented by drawing a developer’s attention to certain
terms, discuss how we leverage information in bug fixes to
make our experiment feasible, discuss which errors we aim to
detect, and then close with an example.

Definition 2.1 (ts-detectable): Given a static type system
ts, a bug b is ts-detectable when adding or changing type
annotations causes the program p containing b to error on a
line changed by a fix and the new annotations are consistent
with f , a fixed version of p.

We assume a fix increases the adherence of p to the
specification and we consider only its effect on resolving b. The
added or changed type annotations may affect several terms,
or only one. These annotations are consistent if they carried to
f type checks, and the type of every annotated term in p is a
supertype of that term’s type when an oracle precisely annotates
it in f . In this experiment, we can only strive to achieve
consistency, because we do not have the ideal oracle that
precisely annotates f and in general, a fix may only partially
resolve the bug or introduce new bugs. One can download
our experimental data to verify how well we have reached
this goal. Consistency implies that we do not intentionally add
ill-formed type annotations. For example, when b and c have
type number, changing var a = b + c to var a:boolean = b + c

incorrectly annotates a as boolean, triggering a type error. If
such ill-formed annotations are not ruled out, one use them to
“detect” any bug, even type-independent failures to meet the
specification.

Let L be a programming language, like JavaScript, and La
be a language based on L with syntactical support for type
annotations, like Flow or TypeScript. Let B = {b1,b2, · · · ,bm}
denote a set of buggy programs. Let a be an annotation function
that transforms a program p ∈ L to pa ∈ La. Finally, let tc be a
type checking function that returns true if an annotated program
pa type checks and false otherwise.

We annotate each buggy program bi that is in B and written
in L, and observe whether it would type check. We calculate
the percentage of bugs that a static type system detects over
all collected ones. Our measure of a static type system’s
effectiveness at detecting bugs follows:

|{bi ∈ B | ¬tc(a(bi))}|
|B|

(1)

Equation 1 reports the portion of bugs that could have been
prevented had a type system, like Flow or TypeScript, reported
type errors that caused a developer to notice and fix them.
Depending on the error model of a static type system, a might
be the identity function, i.e. add no annotations. For instance,

both Flow and TypeScript are able to detect errors in reading
an undefined variable without any annotation.

A. Leveraging Fixes

Bug localization often requires running the software and
finding a bug-triggering input. Code bit rots quickly; frequently,
it is very difficult to build and run an old version of a project, let
alone find a bug-triggering input. Worse, many of our subjects
are large, some having as many as 1,144,440 LOC (Table I).
To side-step these problems, we leverage fixes to localize bugs.
For p ∈ L, we assume we have a commit history as a sequence
of commits C = {c1,c2, · · · ,cn}. When ci ∈C denotes a commit
that attempts to fix a bug, the code base materialized from at
least one of its parents ci−1 is buggy. A fix’s changes help us
localize the bug: we minimally add type annotations only to the
lexical scopes changed by a fix. We add annotations until the
type checker errors or we decide neither Flow nor TypeScript
would error on the bug. This partial annotation procedure is
grounded on gradual typing, which both Flow and TypeScript
employ. These two type systems are permissive. When they
cannot infer the type of a term, they assign the wildcard any,
similar to Abadi et al. ’s Dynamic type [10], to it.

This procedure allows us to answer: “How many public
bugs could Flow and TypeScript have prevented if they had
been in use when the bug committed?”, under the assumption
that one knows the buggy lines. By “in use”, we mean that
developers comprehensively annotated their code base and
vigilantly fixed type errors. The assumption that developers
knew the buggy lines is not as strong as it seems because,
under the counterfactual that developers were comprehensively
and vigilantly using one of the studied type systems, the bug-
introducing commit is likely to be small (median of 10 lines
in our corpus) and to localize some of the error-triggering
annotations, while the rest of the annotations would already
exist in the code base.

Limitations Four limitations of our approach are 1) a “fix”
may fail to resolve and therefore localize the targeted bug, 2) a
minimal, consistent bug-triggering annotation may exist outside
the region touched by the fix, 3) we may not succeed in adding
consistent annotations (Definition 2.1), and 4) the annotation
we add may cause the type checker to error on a bug unrelated
to the bug targeted by the fix. Further, considering only fixed,
public bugs introduces bias. We restrict our attention to these
bugs for the simple reason that they are observable. We have
no reason to believe this bias is correlated with ts-detectability.
Section VI discusses other threats to this work.

B. Error Model

The subjects of this experiment are identified and fixed
public bugs. As Figure 1 shows, we aim to classify these bugs
into those that are ts-detectable (the solid partition of fixed
public bugs) and not (the hashed partition of fixed public bugs).

Type systems cannot detect all kinds of fixed public bugs.
What sorts of bugs do our type systems detect and may
prevent? Type systems eliminate a set of bad behaviours [6].



Fig. 1: The error model of this experiment.

1 function addNumbers(x, y) {
2 return x + y;
3 }
4 console.log(addNumbers(3, "0"));

(a) The buggy program.

1 function addNumbers(x, y) {
2 return x + y;
3 }
4 console.log(addNumbers(3, 0));

(b) The fixed program.

1 function addNumbers(x:number, y:number) {
2 return x + y;
3 }
4 console.log(addNumbers(3, "0"));

(c) The annotated, buggy program.

Fig. 2: JavaScript coerces 3 to "3" and prints "30". From the fix,
we learn that this behavior was unintended and add annotations
that allow Flow and TypeScript to detect it.

More specifically, Flow or TypeScript detects and may pre-
vent type mismatches, including those normally hidden by
JavaScript’s coercions, and undefined property and method
accesses. Additionally, both Flow and TypeScript identify
undeclared variables.

C. Example

Assume addNumbers in Figure 2a is intended to add two
numbers, but the programmer mistakenly passes in a string "0".
Because of coercion, a controversial feature that enriches a
language’s expressivity at the cost of undermining type safety
and code understandability [11], + in JavaScript can take a
pair of number and string values. Thus, Figure 2a converts the
number to a string, concatenates the two values, and prints
"30". By reading the fixed program in Figure 2b, we infer that
both parameters are expected to have type number. We partially
annotate the program, shown in Figure 2c, enabling Flow and
TypeScript to signal an error on line 4 and detect this bug. If,
in addition to this bug, we had shown four other bugs to be
undetectable, Equation 1 would evaluate to 1

5 .

III. EXPERIMENTAL SETUP

Our experimental setup is similar to that of Le Goues
et al. [12]. They aimed to determine, for a sample of real world

Fig. 3: The automatic identification of fix candidates that are
linked to bug reports.

historical bugs sampled from GitHub projects, what proportion
of bugs would been fixed through automatic program generation
(Defects4J [13] enables similar studies and evaluations on real
world bugs for Java-targeted tools). We perform a sampling of
historical real world JavaScript bugs and attempt to determine
what proportion of bugs would have been detected using static
JavaScript type systems if the authors had been using them.

Our study comprised many phases, methodological decisions,
investigations, and techniques. In this section, we describe the
types of data gathered and how we selected the data to use,
discuss potential threats and how we mitigate them, report on
preliminary investigations, and present our annotation process
and various tactics used.

A. Corpus Collection

We seek to construct a corpus of bugs that is representative
and sufficiently large to support statistical inference. As always,
achieving representativeness is the main difficulty, which we
address by uniform sampling. We cannot sample bugs directly,
but rather commits that we must classify into fixes and non-
fixes. Why fixes? Because a fix is often labelled as such, its
parent is almost certainly buggy and it identifies the region
in the parent that a developer deemed relevant to the bug. To
identify bug-fixing commits, we consider only projects that
use issue trackers, then we look for bug report references in
commit messages and commit ids (SHAs) in bug reports. This
heuristic is not only noisy; it must also contend with bias in
project selection and bias introduced by missing links.

1) Missing Links: A link interconnects a bug report and
a commit that attempts to fix that bug in a version control
system. Historically, many of these links are missing, especially
when the developer must remember to add them, due to
inattentiveness, distractions, or fire drills. Naïve solutions to
the missing link problem are subject to bias [14]. GitHub
provides issue tracking functionality in addition to source code
management and provides tight integration to ease linking. In
addition, when pull requests or commit messages reference
bugs in the issue tracker, GitHub automatically links the source
code change to the bug. For these reasons, projects that use
pull requests, issue tracking, and source code management
suffer far less from the linking problem [15].

To validate this and assess the missing link problem in
the context of GitHub ourselves, we collected eight JavaScript



Fig. 4: The workflow of our experiment.

projects, using a set of criteria including project size, popularity,
number of contributors, and the use of Node.js and jQuery. We
manually inspected them and observed that because project
norms dictate that developers refer to bugs in requests and
commits to enable GitHub’s automatic linking, the overwhelm-
ing majority complied with the practice, thus mitigating the
missing link problem.

2) Identifying Candidate Fixes: Figure 3 depicts our
procedure for identifying candidates of bug-resolving commits.
For a project, we extract all bug ids from the issue tracker,
then search for them in a project’s commit log messages;
concurrently, we extract all SHA from the version history,
and search for them in the project’s issues. GitHub allows
developers to label issues as bug reports, but we choose not
to use this functionality and consider all tracked issues, as we
were uncertain what bias this labelling could introduce. When
we find a match, we have a candidate fix that we store as a
triple consisting of the SHA of the candidate, the SHA of its
parent, and the bug report ID. We cross-check matches from
commit logs against matches from the bug reports. If a fix has
more than one parent, the algorithm stores a distinct triple for
each parent for later human inspection. For every automatically
identified candidate, we manually assess whether it is actually
an attempt to resolve a bug, rather than some other class of
commit, like a feature enhancement or code refactoring. We
also filter bug reports written in a language other than Chinese
and English, and fixes that do not modify JavaScript.

The resulting set of bugs is a biased subset of all fixed
public bugs. GitHub may not be representative of projects,
since proprietary projects tend not to use it. While we have
argued the problem is less acute, missing links persist. Finally,
we may not correctly identify bug-fixing commits. We contend,
however, there is no reason, from first principles, to believe that
there is a correlation between the ability of Flow or TypeScript
to detect a bug and the existence of a link between that bug
and the fixing commit. Thus, any link bias in the subset is
unlikely to taint our results.

3) Corpus: To report results that generalize to the population
of public bugs, we used the standard sample size computation
to determine the number of bugs needed to achieve a specified
confidence interval [16]. On 19/08/2015, there were 3,910,969
closed bug reports in JavaScript projects on GitHub. We use this
number to approximate the population. We set the confidence
level and confidence interval to be 95% and 5%, respectively.
The result shows that a sample of 384 bugs is sufficient for
the experiment, which we rounded to 400 for convenience.

To construct a list of bugs we could uniformly sample, we

Max Min Mean Median

Project 1144440 32 18117.9 1736
Fix 270 1 16.2 6

TABLE I: The size statistics in LOC of the projects and fixes
in our corpus, which includes 398 projects5.

took a snapshot of all publicly available JavaScript projects on
GitHub, with their closed issue reports. We uniformly selected
a closed and linked issue, using the procedure described above
and stopped sampling when we reached 400 bugs. The resulting
corpus contains bugs from 398 projects, because two projects
happened to have two bugs included in the corpus.

Table I shows the size statistics of the corpus. The
project size varies largely, ranging from 32 to 1,144,440
LOC, with a median of 1,736. The smallest project is
dreasgrech/JSStringFormat, a personal project with a single
committer. It minimally implements .NET’s String.Format that
inserts a string into another based on a specified format. We
sampled from GitHub uniformly so our corpus contains such
small projects roughly in proportion to their occurrence in
GitHub. For a commit, GitHub’s Commits API4 does not
return a diff; it returns summary data, notably a pair of
numbers, the count of additions and deletions. From this pair,
the number of modifications can only be implicitly bounded
by min(#adds, #dels). Because developers think in terms of
modified lines, not lines of diff, we counted the line in
which Git’s word diff reported modifications. Most bug-fixing
commits were quite small: approximately 48% of the fixes
touched only 5 or fewer LOC, and the median number of
changes was 6. We did not explicitly track the number of
scopes; that said, most of the fixes modified a single scope.
The complete corpus can be downloaded at:

http://ttendency.cs.ucl.ac.uk/projects/type_study/.

B. Preliminary Study

To quantify the proportion of public bugs that the two static
type systems detect, and could have prevented, our study must
1) find a time bound on per-bug assessment and annotation in
order to make our experiment feasible, 2) establish a manual
annotation procedure. Additionally, our study also aims to
classify ts-undetectable bugs. To speed the main experiment,
we wanted to define a closed taxonomy for undetectable bugs.
To these ends, we conducted a preliminary study on 78 bugs,
sampled from GitHub using the above collection procedure.

4https://developer.github.com/v3/repos/commits
5Of the 398 projects, only 375 are still available on GitHub.



Procedure 1 Manual Type Annotation
Input: M, the maximum time to spend annotating a bug
Input: B, the list of sampled buggy versions
Output: O, the assessment of all sampled bugs

1: while B 6= [] do
2: b := head B;B := tail B;
3: for all ts ∈ {Flow,TypeScript} do
4: start := now();Ots[b] := Unknown;
5: while now() <= start + M do
6: Read the bug report and the fix
7: Apply annotation tactics to the patched region
8: if tcts(a(b)) then
9: Ots[b] := True; break

10: end if
11: if the author deems b ts-undetectable then
12: Justify the assessment
13: Categorise b using the taxonomy below
14: Ots[b] := False; break
15: end if
16: end while
17: end for
18: end while

A histogram of our assessment times showed that, for 86.67%
of the bugs, we reached a conclusion within 10 minutes, despite
the fact that we were simultaneously defining our annotation
procedure. Thus, we set M, the maximum time that an author
can spend annotating a bug, to be 10 minutes.
Taxonomy of Undetectable Bugs To build a taxonomy of bugs
that Flow and TypeScript do not currently detect, we used open
coding. Open coding is a qualitative approach for categorizing
observations that lack a priori organization [17]. The researchers
assessed each observation and iteratively organized them into
groups they deem similar. Starting from JavaScript’s error
model, we refined the taxonomy. At the end of our prelim-
inary study, our taxonomy contained JavaScript’s EvalError,
RangeError, URIError, and SyntaxError. To these, we added
StringError, such as malformed SQL queries. The logical
errors we encountered caused us to add BranchError, PredError
that are caused by incomplete or wrong predicates, UIError,
and SpecError, a catch-all for other failures to implement the
specification. Regular expressions are built into and widely
used in JavaScript, so we included RegexError. Finally, we
added ResError to handle resource errors, like out of memory,
and APIError to capture errors such as using a deprecated call.

C. Annotation

Procedure 1 defines our manual type annotation procedure.
Because we annotate each bug twice, once for each type system,
our experiment is a within-subject repeated measure experiment.
As such, a phenomenon known as learning effects [18] may
come into play, as knowledge gained from creating the
annotations for one type checker may speed annotating the
other. To mitigate learning effects, for a bug b in B, we first
pick a type system ts from Flow and TypeScript uniformly at

random, so that, on average, we consider as many bugs for
the first time for each type system. If b is not type related
“beyond a shadow of a doubt”, such as misunderstanding the
specification, we label it as undetectable under ts and categorise
it based on item III-B, skipping the annotation process. If not,
we read the bug report and the fix to identify the patched
region, the set of lexical scopes the fix changes.

Combining human comprehension and JavaScript’s
read–eval–print loop (REPL), e.g. Node.js, we attempt to
understand the intended behavior of a program and add
consistent and minimal annotations that cause ts to error on
b. We are not experts in type systems nor any project in our
corpus. To combat this, we have striven to be conservative:
we annotate variables whose types are difficult to infer with
any. Then we type check the resulting program. We ignore
type errors that we consider unrelated to this goal. We repeat
this process until we confirm that b is ts-detectable because
ts throws an error within the patched region and the added
annotations are consistent (Section II), or we deem b is not
ts-detectable, or we exceed the time budget M.

D. Annotation Tactics

The key challenge in carrying out Procedure 1 is efficiently
annotating the patched region. As previously stated, we rely
on gradual typing to allow us to locally type a patched region.
Sometimes, we must eliminate type errors so the type checker
reaches the patched region. In practice, this means we must
handle modules. With modules out of the way, we use a
variety of tactics to gradually annotate the patched region.
The first, and most important, tactic is to read the bug-fixing
commit. For example, the fix of naugtur/transitionrunner:1

(using author/project:issue to refer to our dataset) assigns
the empty string to the variable initialClass when it is null.
Therefore, we add an annotation to indicate initialClass can
be null. We also use online documentation, when it exists.
For example, accessing a non-existing property triggers bug
Gozala/narwhal-xulrunner:5. We read the documentation of
nsIOutputStream at Mozilla Developer Network to learn and and
inject the appropriate annotation. To handle globals, we use type
shims, which we describe below. As noted, we have striven to
add type annotations that are consistent (Section II) with the the
ideal, fully annotated, and fixed version of the buggy program.

Modules For a subject buggy program, we first run the type
checker without any type annotations. Often the type checker
reports an error before reaching the patched region due to
failures to import modules. We search for the declaration of
the variables in the fix and try to see whether they use any
module methods, like jQuery’s $. Finding variable declarations
can be nontrivial in JavaScript, precisely because a lack of
types hindered our understanding of the program. If we deem
a missing module to be unrelated to the bug, we annotate it as
any to eliminate such type errors. For example,

1 // Flow and TypeScript cannot properly
2 // import express.js
3 var express = require(’express’);
4 var app = express.createServer();



becomes

1 var express:any = { };
2 var app = express.createServer();

For TypeScript, if we deem a missing module related to the
bug and it exists in DefinitelyTyped6, we include it. If the bug
stems from a misuse of a library that has an annotated interface
in DefinitelyTyped, we reuse DefinitelyTyped’s annotations. For
example, deprecated internal data models in ember-cli caused
the bug sivakumar-kailasam/broccoli-leasot:55. To solve it,
we borrowed DefinitelyTyped’s annotations for ember-cli.
If the missing module is related but lacks an interface in
DefinitelyTyped or we are using Flow, we construct a type
shim for it, manually inferring the types from the module’s
documentation or its code base.

Type Shims In general, a patched region contains free
identifiers that we need to annotate. Introducing casts would
increase the annotation tax. Our workaround is to introduce
a type shim7, a set of type bindings for the free identifiers.
From within the patched region, the rest of the program can be
viewed as a module for which we can define a shim as a set of
interfaces. We have aimed to construct consistent type shims
(Section II); when a shim includes a property or method that
is unrelated to the bug, we annotate it with any. For example,
by using a shim, the code snippet

1 var t = {x: 0, z: 1};
2 t.x = t.y; // y does not exist on t
3 t.x = t.z; // z exists on t, but is unrelated

becomes

1 interface T {
2 x:number;
3 z:any; // z has the type any
4 }
5 var t: T = {x: 0, z: 1};
6 t.x = t.y;
7 t.x = t.z;

IV. RESULTS

Our main results rest on an assessment of our corpus of 400
buggy versions of JavaScript projects conducted by one of the
authors. To help him calibrate, all authors assessed a subset
of the bugs. First, we present the inter-rater agreement of that
three-way assessment, before presenting our main result: that
static type systems find a significant number of public bugs!

A. Inter-Rater Agreement

To calculate inter-rater agreement, we uniformly selected 20
bugs for calibration, then all authors annotated and classified
each bug, using Procedure 1. Once all 20 bugs were processed,
the authors collectively resolved each one on which they were
not unanimous.

After this calibration step, we uniformly selected an ad-
ditional subset of 80 buggy versions. Once all authors had

6A project from the TypeScript community that provides annotated interfaces
for popular JavaScript libraries, at https://goo.gl/xvDaSI

7We overload shim here, which traditionally means code that normalises
the functionality of an existing API across different browsers.

Fig. 5: Venn Diagram of Flow- and TypeScript-detectable bugs.

independently classified each of the 80 bugs, we calculated
the inter-rater agreement. There was full agreement among
all authors for 86.4% of the issues, indicating a high level of
agreement. Because there were more than two raters, Cohen’s κ

is not an appropriate statistic [19]. Instead, we use Gwet’s AC1
agreement coefficient, because it accommodates more than two
raters and is more stable than Fleiss κ when the distribution
of ratings is highly skewed (as in our case where over 80% of
cases were rated as undetectable) [20, 21]. The AC1 statistic
for the 80 ratings by the three authors is 0.89 which indicates
“almost perfect” agreement [22, 23]. In an effort to compare
our ratings to a baseline rater that simply classifies each bug
as undetectable (i.e. always choosing the majority class) we
calculated the AC1 statistic three times, each time replacing
one of the authors with such a baseline rater. The resulting
AC1 statistics were statistically lower, 0.82, 0.85, and 0.83.

In discussing unknowns, we learned that each of us indepen-
dently had categorized a bug as unknown when we thought it
was detectable, but could not show it, before we ran out of time.
To see the impact of this implicit agreement, we relabelled
“unknown” as “detectable” and recomputed AC1: it increased
to 0.90; perfect agreement rose to 90%.

B. Detecting Public Bugs

Research Question: On what percentage of public bugs
does Flow 0.30 or TypeScript 2.0 report errors?

Of the 400 public bugs we assessed, Flow successfully
detects 59 of them and TypeScript 58. We, however, could not
always decide whether a bug is ts-detectable within 10 minutes,
leaving 18 unknown. The main obstacles we encountered during
the assessment include complicated module dependencies,
the lack of annotated interfaces for some modules, tangled
fixes that prevented us from isolating the region of interest,
and the general difficulty of program comprehension. For
these 18 bugs, we spent as much time as needed to resolve
each one. We patiently imported all relevant modules by
using interface management tools like Typings8, annotated
interfaces as appropriate, and read the code base and official
documentation when necessary. We used simple experiments
to validate a ts-undetectable assessment, as necessary.

As a result, we successfully labelled all 400 bugs as either
detectable or undetectable under Flow and TypeScript. Flow

8https://github.com/typings/typings



detected one more for a grand total of 60; TypeScript catches
two more and also reaches 60. Running the binomial test on
the results shows that, at the confidence level of 95%, the true
percentage of detectable bugs for Flow and TypeScript falls into
[11.5%,18.5%] with mean 15%. Figure 5 shows that Flow and
TypeScript largely detect the same bugs. Section V describes
the bugs on which they differ in detail. Together, Flow and
TypeScript detect a total of 63 bugs, of which 7 (11%) are field
bugs. This proportion of field bugs is approximate: to compute
it, we manually counted ts-detectable bugs open across releases.
Some projects do not tag releases; we conservatively deemed
their bugs non-field. The time spent assessing each of the
initially unknown 18 bugs varied, ranging from 8 minutes to
more than 1 hour of dedicated time. Surprisingly, 3 bugs took us
only around 10 minutes to decide their ts-detectability on a fresh
restart, which, we reckon, is due to our increasing expertise.

Our experimental methodology and results extend previous
efforts to measure the effectiveness of static typing, which have
relied on programming assignments written by students [24] or
have performed aggregate statistical analyses comparing two
large disjoint sets, one composed of statically typed programs
and the other dynamically typed programs [25, 26]. Our study
complements these efforts by quantifying the bug-detection
effectiveness of static types on bugs in real world projects on the
same subject program. We have aimed to study the expressivity
and power of type annotations, not the skill of the annotators.
This is why we defined Procedure 1, defined and agreed the
annotation tactics that III.D details, and compute the inter-rater
agreement to measure the degree to which we have succeeded
in consistently and uniformly devising and applying annotations.
In this way, we have striven to emulate surgery trials, which
seek to draw conclusions about surgeries, not the surgeons [8].

This result probably greatly understates the impact of static
typing, since we designed our experiment from its inception
to under-approximate the impact of static typing:

1) We study only publicly visible bugs. Anecdotally, static
type systems eliminate many bugs during development
and also obviate certain classes of testing. We do not
measure either effect. Public bugs are also mainly due to
misunderstanding the specification, which type systems
cannot detect.

2) Static type systems have other strengths, such as facilitat-
ing program understanding, improving performance, and
enabling better code completion and navigation.

3) Our experiment uses only two relatively weak type
systems, Flow and TypeScript; stronger type systems could
perform better.

4) The authors’ limited expertise in Flow and TypeScript (and
JavaScript) means that we may have incorrectly deemed
a bug to be undetectable or unknown.

At first glance, 15% may not appear to be a large number.
In practice, however, even small changes in the number of
checked-in bugs can be quite valuable. When we presented the
results to an engineering manager at Microsoft, he responded

“That’s shocking. If you could make a change to the way we

do development that would reduce the number of bugs being
checked in by 10% or more overnight, that’s a no-brainer.
Unless it doubles development time or something, we’d do it.”.
We have shown that Flow and TypeScript meet and exceed
the 10% bar; we discuss the cost in our discussion of the
annotation tax in Section V.

V. CASE STUDY

Based on three criteria, we select bugs for further manual
assessment: ones whose Flow- or TypeScript-detectability is not
agreed upon, ones whose Flow- and TypeScript-detectability
differ, and ones that are TypeScript-detectable under version
2.0 but not under 1.8.

Disagreements Of the 80 uniformly-sampled bugs that we
used to calculate inter-rater agreement, each rater needed to
make 160 decisions in total, 80 for Flow-detectability and 80 for
TypeScript-detectability. 138 of these 160 decisions were unani-
mously labelled. We define a strong disagreement as a disagree-
ment in which one rater deems the bug detectable while another
deems it undetectable. Of the 22 disagreements, 12 are strong.

Let U denote unknown, D detectable, and D undetectable. We
manually assessed each disagreement without a time bound and
found that, in each case, weak disagreements resolved as fol-
lows: UUD→ D,UUD→ D,UDD→ D,UDD→ D. In other
words, the rater who confidently assessed ts-(un)detectability
within the time bound was correct every time in our experiment.
Our 12 strong disagreements had three patterns of labels: 2
were DDU , 2 were DDD, and 8 were DDD. After manually
resolving all of them, we found that whenever two raters agreed,
they were correct. Among the 10 strong disagreements where
a rater disagreed with the other two, rater one dissented in 8
cases and rater two in 2 cases. With hindsight, we would have
improved our assessment protocol. We should have specified
that each rater consider whether or not added logic was manual
type checking. We would have agreed on whether or not to
consider typos in library names ts-detectable. These changes
alone would have eliminated 7 of the 12 strong disagreements.
Please visit our project page for more details.

Classifying ts-undetectable Bugs Figure 6 categorizes bugs
that are undetecatble under both Flow and TypeScript, after the
18 unknowns were resolved. Recall that, while BranchError,
PredError, and URIError are logic errors in implementing the
specification, SpecError captures all other specification errors.
Unsurprisingly, SpecError, with 186 bugs, accounts for 55%
of the total bugs and significantly outweighs other categories.
Errors implementing specification, as a group, overwhelmingly
constitute 78%. This result, yet again, demonstrates the
importance of specifications.

Despite the dominance of errors implementing specification
and the fact that only public bugs are considered, there still
exists a non-specification-related opportunity for type systems:
StringError. Ranked second in the histogram, StringError is
a broad concept that represents errors caused by the incorrect
content of a string, such as a wrong URL. The reason why
StringError is so common, we conjecture, is two-fold: first,



Fig. 6: The histogram of undetectable public bugs under both
Flow and TypeScript.

the string type itself is extremely popular; second, JavaScript
is rooted in web applications that extensively use hyperlinks.
However, the string type is opaque to most static type systems,
and how to effectively refine it remains challenging, although
promising work is emerging in this direction [27].
Measuring TypeScript 2.0 null Handling Improvement Type-
Script 2.0 was released during this study, giving us the
opportunity to measure how effectively it handles null and
undefined. Prior to 2.0, all types were nullable in Type-
Script [28]. In Flow, all types, except any, void, and null,
are non-nullable by default; one prefixes them with ? to make
them nullable. This design choice enables Flow to elegantly
catch incorrect null / undefined usage. TypeScript 2.0 added
the compiler option --strictNullChecks, which, when enabled,
makes most types nonnullable, allowing the user to or null

into a type annotation to specify nullability. For instance,
var s: string | null = "foo" defines s to be a nullable string.

We reviewed our corpus and found that 22 bugs, an
increase of 58%, are detectable under TypeScript 2.0 but not
under TypeScript 1.8. This result decisively and quantitatively
demonstrates the value of TypeScript 2.0’s strict null checking.
Comparing Flow and TypeScript Though sharing a similar
annotation syntax, Flow and TypeScript differ in terms of
expressivity and type variance. These dimensions are hard to
quantify. Thus, we compare Flow and TypeScript in terms of
their ability to detect and potentially prevent public bugs had
they been used when those bugs were introduced and the costs
of the requisite annotations.

As discussed in Section IV-B, Flow and TypeScript both
catch a nontrivial portion of public bugs. In our dataset, the
bugs they can detect largely overlap, with 6 exceptions: 3 bugs
are only Flow-detectable and 3 only TypeScript-detectable.

All three Flow-detectable bugs share a common feature
that reveals a weakness in TypeScript’s recently introduced
null handling: TypeScript does not error when concatenating a
possibly undefined or null value to another of type string. For
example, TypeScript remains silent on the following statement:
1 var x = " " + null + " ";

whereas Flow reports a type error:
1: ’ ’ + null + ’ ’

^^^^ null. This type cannot be added to
1: ’ ’ + null + ’ ’

^^^^^^^^^^ string

Without knowing whether TypeScript intentionally allows this
behaviour, we cannot judge this decision, but its cost is
substantial: TypeScript could have detected 3 more bugs, which
amounts to an increase of around 5%.

Though bug arrowrowe/es6-playground:2 is detectable under
both Flow and TypeScript, it is worthy of attention. Origi-
nally, we reckoned that it was only Flow-detectable: Flow
natively supports Node.js’ require() function, which imports
modules, and reports that the module named as a argument
of require() does not exist; TypeScript lacks such support.
The TypeScript team, however, helped us realize that, by
using a TypeScript-specific module-importing syntax we had
overlooked, import foo = require("foo"), this bug is, in fact,
TypeScript-detectable. Similarly, we also thought that Flow had
support for JavaScript’s native functions, like parseInt() in
pupil-monitoring/pupil:14. Here, the TypeScript team brought
our attention to the --noImplicitAny option, with which enabled,
TypeScript will error when it fails to infer a variable’s type.

Two of the three bugs that are only TypeScript-detectable
arise due to Flow’s incomplete support for a popular JavaScript
idiom, using a string literal as an index. For example,
TypeScript detects the bug conanbatt/OpenKaya:45 when i0

and i1, two variables used as indexes, are annotated with
undefined | string | number; Flow fails with the same annota-
tion. The remaining bug, sandeepmistry/node-core-bluetooth:1,
arises because of Flow’s permissive handling of the window

object. Below is its error message:
node-core-bluetooth/lib/central-manager-delegate.js:146
}.bind(mapDelegate(self), mapPeripheral(identifier), error));

^^^^
ReferenceError: self is not defined

In JavaScript, self generally refers to the global object, window.
This bug is caused by a operating system upgrade, after which
the system no longer recognises self and forces the developer
to use $self. Therefore, the fix simply replaces self with $self.
Both Flow and TypeScript are able to infer that self has type
Window. By reading the issue report and the code, we are able
to infer that function mapDelegate accepts values of only string

or number type. In TypeScript, we add the following annotation
to mapDelegate’s definition:

function mapDelegate(self:string | number) {

Upon type checking, TypeScript signals a type error:
central-manager-delegate.ts(146,22): error TS2345: Argument of

type ’Window’ is not assignable to parameter of type ’string
| number’.

Flow, on the other hand, even with the same annotation, does
not regard self being passed to mapDelegate as a type error.
The per-Bug Annotation Tax Everything comes at a price. To
enjoy the benefits that a static type system brings, a developer
often needs to annotate their program. Directly measuring the
effort programmers must expend to annotate their programs
for a static type system would requires a large-scale, invasive
study of two teams of developers, one using static types and
other dynamic types, with all the attendant cost and confounds
such a large user study would entail. Thus, we resort to under-
approximating the annotation tax with two simple, expedient



proxies: token tax, the number of tokens in the added type
annotations, and time tax, the time spent adding annotations.

The token tax rests on the intuition that each token must
be selected, so this proxy measures the number of decisions
a programmer must make when adding type annotations. For
a ts-detectable bug, we define the token tax as the number
of tokens in the annotation needed to trigger a type error on
a line involved in causing the bug. Let ∆ be a function that
returns the syntactical difference between two code snippets
and || · || be a function that calculates the number of tokens
in a code snippet. Then, the token tax is ||∆(a(bi),bi)||. To
report the time to annotate, we recorded how long we spent
annotating each buggy version in the commit message, creating
an electronic laboratory notebook [29].

These measures of the annotation tax are per-bug and
underestimate the annotation effort in time and tokens relative to
the whole code base, because our experiment leverages the fix to
localize our annotation effort, as detailed in Section II-A. With
this knowledge, we locally annotate the region aimed at this
specific bug, ignoring unrelated type errors. The developers who
originally committed the buggy code lacked this knowledge
and, in the worst case, may have needed to annotate the
entire program. However, under the assumption that the project
has fully embraced using a static type checker, the codebase
would already be annotated prior to the bug-introducing change.
Our annotation tax metric measures just the time and tokens
required for the additional annotations at the time the bug-
introducing change was made. Thus, our measure captures
the case of incrementally adding and annotating patches to an
already annotated code base. It is also likely that the project
developers will be more knowledgeable about the codebase
than the authors of this paper and take even less time to add
the needed annotations.

Using this measure, we answer the question “What is the per-
bug annotation tax in number of tokens of Flow and TypeScript,
without considering the definition of shims?”, finding that on
average Flow requires 1.7 tokens to detect a bug and TypeScript
2.4. Two factors contribute to this discrepancy: first, Flow
implements stronger type inference, mitigating its reliance on
type annotations; second, Flow’s syntax for nullable types is
more compact. As discussed previously, to denote a variable is
nullable in Flow, one simply needs to add a ? before the type
annotation, like ?number, whereas TypeScript requires the use of
union type operator, like number | null | undefined. The bene-
fit of type inference in saving type annotations is also shown in
the median values. Table II exhibits a sharper difference in time
tax between Flow and TypeScript. Thanks to Flow’s type infer-
ence, in many cases, we do not need to read the bug report and
the fix in order to devise and add a consistent type annotation,
which leads to the noticeable difference in annotation time.

Cross Pollination In our experiment and case studies,
handling modules was the most time-consuming aspect of
annotating buggy versions. Flow has builtin support for popular
modules, like Node.js, so when a project used only those
modules, Flow worked smoothly. Many projects, however, use

Token Tax Time Tax (s)
Mean Median Mean Median

Flow 1.7 2 231.4 133
TypeScript 2.4 2 306.8 262

TABLE II: Under-approximation of the annotation tax in tokens
and seconds for bugs detected by either Flow or TypeScript.

unsupported modules. In these cases, we learned to greatly
appreciate TypeScript community’s DefinitelyTyped project.
Flow would benefit from being able to use DefinitelyTyped;
TypeScript would benefit from automatically importing
popular DefinitelyTyped definitions. Flow would also benefit
from supporting the use of string literals as array indices.
TypeScript should borrow more null-handling tactics from
Flow, as discussed above, like preventing the + operator from
simultaneously taking null and string as operands.

VI. THREATS TO VALIDITY

To address the standard threat to external validity, we
uniformly sampled issues from JavaScript projects on GitHub, a
vast repository of software project and conservatively identified
fixes (Section III). Our experiment rests on public bugs, studies
two static type systems for JavaScript, and relies on non-expert
humans to annotate programs to determine whether Flow or
TypeScript could have detected and prevented them. In each
case, we have designed our experiment to under-approximate
the effect of static type systems: since we always run the
type checker on our annotated version of the buggy (Line 9 of
Procedure 1), the only way we can generate a false positive and
report a bug detectable when, in fact, it is not is if we fail to
write consistent annotations (Definition 2.1). Private bugs occur
in a buffer in a developer’s editor, or survive to file saves or to
commits to a local branch. Capturing these bugs is intrusive,
requiring an instrumented IDE [30], so this work considers
only public bugs, not private bugs. Type systems, however, can
and do effectively detect and prevent private bugs. Because we
have studied only Flow and TypeScript, our experiment reflects
their strengths and weaknesses, and under-approximates the
benefits of general type systems. We may have incorrectly
determined a bug to be undetectable when Flow or TypeScript
could have, in fact, reported an error given correct annotations
and alerted a developer to prevent the bug. If we could not
construct type annotations that caused the type system to report
an error, we marked the bug as unknown. For each such bug,
we made notes that we hope will be useful for the designers of
type systems. While we are not experts in Flow or TypeScript,
we have, through working on this project, become informed
lay-people and therefore if we labelled a bug as unknown, it is
a safe bet that many industrial practitioners would as well. We
leveraged fixes to localize our annotation efforts; Section II-A
details the attendant threats and limitations.

VII. RELATED WORK

Being the most successful light-weight verification technique,
type systems are always in the spotlight. We are not the first



to empirically compare dynamic and static type systems [31,
32, 33, 34, 35, 25, 26]. These studies perform the comparison
along different dimensions, including development productivity,
code usability, and code quality.

Prechelt and Tichy conducted a controlled experiment,
in which 34 subjects were divided into four groups, two
developing in C with a type system and other two without, to
assess whether the type system would benefit developers [36].
Hanenberg’s study [24] which ran for over a year and involved
49 students is a notable achievement. Hanenberg wrote his
own language in two versions, one equipped with a static
type system and the other with a dynamic one. The subjects
were then divided into two groups, and required to write a
simplified Java parser. For each student, Hanenberg recorded
the development time of the scanner and the number of passed
test cases for the parser. The results indicated that static type
systems did not have a significant positive impact on both the
development time and the code quality.

Nonetheless, questions remain. Developers are well-paid so
it is expensive to study them. Thus, most studies are small
scale or use students; while Hanenberg’s scale is impressive,
it still relies on students. Further, his custom language is itself
another confound. In contrast, our experiment samples from
what developers naturally do in the course of their work, in
particular from approximately 537,709 commits they create.
Thus, it avoids the cost of dedicated developer participation.
Moreover, the semi-automation and modular implementation
of this experiment offers great reproducibility and adaptability.

Empirical Studies of JavaScript JavaScript’s prevalence
in the web and increasing use in general programming has
drawn more attention. Richards et al. [37] and Ratanaworabhan
et al. [38] concurrently analysed the run-time behavior of
real-world JavaScript applications. The former invalidated
some common assumptions and called for more flexible static
analysis, while the latter focused on performance and concluded
that the existing benchmarks were not representative. Richards
et al. further investigated the use of eval, a powerful but
controversial function [39]. The authors showed that eval was
pervasive and justified its importance. Pradel and Sen carefully
examined another dubious feature of JavaScript, implicit type
conversion [40]. Similar to eval, implicit type conversion is
widely used, but much less harmful than commonly assumed.
Nikiforakis et al. extensively studied the real-world uses of
JavaScript’s remote library inclusion and revealed four types
of vulnerabilities [41]. Apart from research on the language,
while Ocariza et al. and Hanam et al. classified JavaScript
bugs and investigated their root causes [42, 43, 44], Selakovic
and Pradel restricted themselves to performance issues [45].

Static Typing for JavaScript JavaScript’s very flexibility
undermines its security and correctness when used to compose
large and complex programs. Academia and industry has
proposed many approaches to assist JavaScript developers, of
which static typing is a notable example. Ever since Thiemann’s
first proposal [46], static typing for JavaScript has rapidly
developed. Standalone static type checkers such as Flow,

compilers supporting type annotation and type inference such
as Closure, and programming languages extending JavaScript
with static typing such as TypeScript and Dart, have emerged.
The reason we choose Flow and TypeScript is threefold. First,
Flow and TypeScript were created and are actively maintained
by two industrial giants. In particular, TypeScript’s community
has developed DefinitelyTyped, a mature collection of annotated
interfaces for popular JavaScript libraries, for which Feldthaus
and Møller built an analysis tool [47]. In contrast, other tools,
such as Roy9, have not been actively updated. Second, to use
Flow and TypeScript, one simply needs to add type annotations
to an existing JavaScript program. Many of the alternatives
require a complete rewrite, because their grammar differs from
that of JavaScript. Finally, Flow and TypeScript largely share
annotation syntax, which allowed us to reuse some annotations.
Historical Treatment Methodology Previous work has mined
software repositories to measure a property of an existing,
mined version, like the number of vulnerabilities a static
analysis detects [48] or warnings a lint tool reports [49]. Most
of these studies are observational; a tool is used on history,
but neither the history nor the historical artifacts are modified.
Work does exist that applies a treatment to the history and/or
artifacts in the history (e.g. changing the source code) and
measures the impact of such an intervention. Le Goues et al.
automatically modified source code to fix bugs [12]. Brun et al.
introduced different orderings of historical branch merges from
repository histories to determine how early conflicting changes
could have been detected [50]. Bird and Zimmermann replayed
development activity on alternative branch structures to identify
branches that acted as bottlenecks to code movement [51]. We
posit that this methodological approach of applying a treatment
to a historical snapshot of a project and measuring its impact
can be a powerful empirical tool. In future work, we plan to
use it to quantify the effectiveness of advanced dynamic type
analysis techniques for JavaScript [52, 53] and comparing them
against static typing.

VIII. CONCLUSION

In this paper, we evaluated the code quality benefits that
static type systems provide to JavaScript codebases. The results
are encouraging; we found that using Flow or TypeScript could
have prevented 15% of the public bugs for public projects on
GitHub. As far as we are aware, this is the first work to
empirically evaluate the efficacy of static type systems for
JavaScript on mature, real-world code bases. As such, our
study will help practitioners decide whether to adopt a static
type system for JavaScript by categorizing bugs that Flow and
TypeScript can and cannot detect at the time of this writing
and summarizing differences between the two systems. All
experimentation artefacts can be found at

http://ttendency.cs.ucl.ac.uk/projects/type_study/.
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