The Coolest Projects Ever
The First Steps toward founding

___— your “Big Startup”- BRI

Earl T. Barr
e.barr@ucl.ac.uk
earlbarr.com

J'adore le concept !

My Research Venn Diagram

-

-

ngtwa re
ngineering

Earl T. Barr, UCL

The Test Oracle Problem

Earl T. Barr, UCL

Automatic Software Transplantation

Best Paper, ISSTA 2015

QModelIndex start;

if (currentIndex().isvalid())
start = currentIndex();
else

start = d->model-=>index(0, 0, d-=>root);

bool skipRow = false;
bool keyboardTimewasvalid = d->keyboardInputTime.isvalid();
qint64 keyboardInputTimeElapsed = d->keyboardInputTime.restart();
if (search.isEmpty() || !'keyboardTimewasvalid

|| keyboardInputTimeElapsed > QApplication::keyboardInputInterval()) {

d->keyboardInput = search;

skipRow = currentIndex().isvalid(); //if it is not valid we should real
} else {

d->keyboardInput += search;

Earl T. Barr, UCL

My Research Venn Diagram

4)
agline
earning
2 N
SE
_ \ /

Earl T. Barr, UCL

COMMUNICATIONS
LA o Ak

CACM.ACM.ORG

\
Coding as Sport //,;
The Moral Imper,a/tive of AI
Increasing the Security
of Smart Buildings e

~

ACM's 2016 General Election

VN

Association for
Computing Machinery

DOI:10.1145/2902362

On the Naturalness of Software

By Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu

Abstract

Natural languages like English are rich, complex, and pow-
erful. The highly creative and graceful use of languages like
English and Tamil, by masters like Shak eand Awvaiyar,
can certainly delight and inspire. But in practice, given
cognitive constraints and the exigencies of daily life, most
human utterances are far simpler and much more repetitive
and predictable. In fact, these utterances can be very use-
fully modeled using modern statistical methods. This fact
has led to the phenomenal success of statistical approaches
to speech recognition, natural language translation, question-
answering, and text mining and comprehension.

We begin with the conjecture that most software is also
natural, in the sense that it is created by humans at work,
with all the attendant constraints and limitations—and
thus, like natural language, it is also likely to be repeti-
tive and predictable. We then proceed to ask whether (a)
code can be usefully modeled by statistical language mod-
els and (b) such models can be leveraged to support soft-
ware engineers. Using the widely adopted n-gram model,
we provide empirical evidence supportive of a positive
answer to both these questions. We show that code is also
very regular, and, in fact, even more so than natural lan-
guages. As an example use of the model, we have developed
a simple code completion engine for Java that, despite its
simplicity, already improves Eclipse’s completion capabil-
ity. We conclude the paper by laying out a vision for future
research in this area.

too cumbersome to perform practical tasks at scale. Both
these approaches essentially dealt with NLP from first prin-
ciples—addressing language, in all its rich theoretical glory,
rather than examining corpora of actual utterances, that is,
what people actually write or say. In the 1980s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple
languages,* along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely available practical applications, such as statistical
translation used by translate.google.com.”

Can we apply these techniques directly to software, with
its strange syntax, awash with punctuation, and replicate this
success? The funny thing about programming is that it is as
much an act of communication, from one human to another,
as it is a way to tell computers what to do. Knuth said as
much, 30years ago:

Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on explaining to
human beings what we want a computer to do.*

If one, then, were to view programming as an act of com-
munication, is it driven by the “language instinct”? Do we
program as we speak? Is our code largely simple, repetitive,
and predictable? Is code natural?

Research Highlight, 2016

Earl T. Barr, UCL

A Survey of Machine Learning for Big Code and Naturalness

MILTIADIS ALLAMANIS, Microsoft Research

EARL T. BARR, University College London

PREMKUMAR DEVANBU, University of California, Davis

CHARLES SUTTON, University of Edinburgh and The Alan Turing Institute

Research at the intersection of machine learning, programming languages, and software engineering has
recently taken important steps in proposing learnable probabilistic models of source code that exploit the
abundance of patterns of code. In this article, we survey this work. We contrast programming languages
against natural languages and discuss how these similarities and differences drive the design of probabilistic
models. We present a taxonomy based on the underlying design principles of each model and use it to navigate
the literature. Then, we review how researchers have adapted these models to application areas and discuss
cross-cutting and application-specific challenges and opportunities.

CCS Concepts: « Computing methodologies — Machine learning; Natural language processing; « Soft-
ware and its engineering — Software notations and tools; - General and reference — Surveys and
overviews,

Additional Key Words and Phrases: Big code, code naturalness, software engineering tools, machine learning

Earl T. Barr, UCL

My Research Venn Diagram

~
/

F[ogramming
anguage

SE

Earl T. Barr, UCL

Automatic Detection of Floating-Point
Exceptions

Earl T. Barr, UCL

Time-Travel Debugging

Tardis

Earl T. Barr, UCL

My Research Venn Diagram

-

formation
ecurity

ML

SE

Earl T. Barr, UCL

The Arms Race: Adversarial Search Defeats
Entropy Used to Detect Malware

Adversary‘ ‘Classiﬁer designer [Tt

1. Analyze classifier 4. Develop countermeasure

‘ (e.g., add features, retraining) | [l
i2. Devise aﬁ% 3. Analyze attack | A

H(X) = - Z P (z;)log, P (z;)

Earl T. Barr, UCL

Ever Wonder about a 5 Set Venn™?

P! ffb aaaaa ox
EUR@EL
UNIVERSATIS"
|

Earl T. Barr, UCL

Or 6 Set?

Earl T. Barr, UCL

Previous Student Projects

Earl T. Barr, UCL

Projects: Automating the Command Line

> BCS Lovelace Colloquium _ Maith reyi Venkatesh
> AUTOMATING REPETITIVE TASKS _

The BCSWomen Lovelace

> Maithreyi Venkatesh and Dr. Earl Barr, University College London _ * Col |Oq uium is an annual one d ay
"I SPEND A LOT OF TIME ON THS TASK. The Probl conference for women students of
T SHOULD LRITE A PROGRAM AUTOMATING IT!* ¢ rroblem : :
Users underestimate the number of times they will repeat a task while Com P uti ng an d re I ated Su bJ ects.
simultaneously overestimating the cost of automation.
Existing tools do not solve this problem; requires far too much user
input. https://bcswomenlovelace.bcs.org/

The Aim

The payoff gained from automating tasks is measured in terms of

keystrokes. This algorithm aims to save users’ keystrokes.

The Application

Aim to apply automation algorithm to the command line interface to

REWINKNG ____ NOTIME FOR
ORIGINAL TASK

ANYVIORE 1. Automatically detect and generate aliases.

develop a tool that uses users’ Bash history files to:

TME 2. Automatically detect and generate mini-scripts.

Fig 1. XKCD captures users’ perception towards automation. Algorithm can be applied to REPL languages.

The Data & Initial Analysis Mini_script Detection & Generation Ea rl T. Ba Ir, UCL

https://bcswomenlovelace.bcs.org/

Internships: Multilayer Network Analysis

Commiting

gy
P
‘./v'
& I
f/ (f
{ A I
! ™o [
A < o)
i
/]
of
A ¢
-~ ¥
g !
£
S /

ProjectStructure

Reviewing

IssueTracking

SooAgdvkapndsang

Earl T. Barr, UCL

Internships: Typilus
Programming Languages Design and Implementation (PLDI) 2020

Inference Graph Representation of Code Training

Partially — II Code with Type
py Annotated [von-torning <:| Annotations
Code

" NEXT_TOKEN
Type Map
A map of type
embeddings
(RP) to known

........ N
type annotations.

A551gn

“y ~——> SUBTOKEN_OF
—> OCCURRENCE_OF » GNN
=+ => NEXT_LEXICAL_USE
====> NEXT_MAY_USE /,

~ = ™ ASSIGNED_FROM

\\ Type Embedding Type Embedding

&

Find k-Nearest Neighbors
in Type Map R Type Embeddings |

P(sg:7) == Z]I(T,—r)d \

~~

Type Type
Checker Predictions

Soline Ducousso

/—fﬁ,—

Type Space

Earl T. Barr, UCL

Automatic Software Transplantation

Best Paper, ISSTA 2015

QModelIndex start;

if (currentIndex().isvalid())
start = currentIndex();
else

start = d->model-=>index(0, 0, d-=>root);

bool skipRow = false;
bool keyboardTimewasvalid = d->keyboardInputTime.isvalid();
qint64 keyboardInputTimeElapsed = d->keyboardInputTime.restart();
if (search.isEmpty() || !'keyboardTimewasvalid

|| keyboardInputTimeElapsed > QApplication::keyboardInputInterval()) {

d->keyboardInput = search;

skipRow = currentIndex().isvalid(); //if it is not valid we should real
} else {

d->keyboardInput += search;

Earl T. Barr, UCL

Projects: Software Transplantation

ON) Meta

Dr. Alexandru
Marginean

Gold Medal 2016 Hummies

Earl T. Barr, UCL

Tangra: Slaying Immortal Bugs

In a block chain, code is immutable. But even Gods can be slain.

Joint work with Zvezdin Besarabov

Earl T. Barr, UCL

Project Ideas

Aka this year’s crop of genius idea
and life-transforming opportunities!

The needful

Genius ideas Driving the combine Fame, glory, and riches
https://www.daera-ni.gov.uk

Just a bit of work
Earl T. Barr, UCL

Why an Individual Research Project?

III .

e “Individual” is a misnomer.

 Don’t get lost in the crowd!

* | do companies too!

Fame, glory, and riches

Earl T. Barr, UCL

Individual Research Project |
with Morgan Stanley

Morgan Stanley

Technology at Morgan Stanley

SEBEE000E
seeeneenng 11,0007+

666666666666 engineers in technology - largest
department in the firm

38

Distinguished Engineers including
Bjarne Stroustrup

~954.5B
|
% ﬂ invested in technology and innovation
each year

Morgan Stanley

About Morphir

multi-language system built on a data format that captures

an application's domain model and business logic in a
technology agnostic manner

GitHub 8 finos/ morphir ' Public

if availableSurfboards >= requestedSurfboards then

I available surfboards >= requested surfboards l P
No

rejected l

.
Reserved requestedSurfboards M O rp h I r l
Yes
else
Rejected E I I I l I R reserved
requested surfboards I I I M L5
“ .

Bosque —;?:—» Scala
Legend / \

Frontends Backends

JavaScript

Attila Mihaly

Morgan Stanley
(® Budapest

14 years at Morgan Stanley
Built multiple trading systems
Co-created Morphir

Now maintaining Morphir

AttilaMihaly 4

528 commits 76,466 ++ 71401 --

AA

April 2021 October

Morgan Stanley

Open-source Momentum

+ We want to change the whole approach to
developing software in Finance to make it both
more efficient and less risky.

« Contributions

FINOS
— Goldman Sachs — Legend

— Morgan Stanley — Morphir Legend wmmp ,’.olﬂ morphir =m Bosque

— Microsoft Research — Bosque

Morgan Stanley

The Project: Add Data Constraints to Morphir

* Goals
+ Extend the Morphir IR with invariants S W AN ! negative number
. . { . ?
- Add more specific types to the SDK (like Nat) Bl of shares -
, maxShares : Int
- Extend type inference to retain invariant information S ACti°“§ .
} max < min ?

* Pass invariants to Bosque checker for verification

 Skills used
* Functional programming: Elm

— Designed to get JS programmers hooked on FP

. type allias Rule = ensureg
— Learning EIm QL { minShares : Nat 4 non-negative
6%5777/ , maxShares : Nat
: Type theory ng MO , action : Action ensures
,2)/7AP invariant r = | min < max

r.minShares <= p.maxShares

2
J

Individual Research Project |l
with Bloomberg

Project Admin

Title: Converting Spreadsheets to Python Functions
Main Supervisor: Prof. Earl Barr

Industry Sponsor: Alex Brisan, Software Engineer, Bloomberg

TechAtBloomberg.com | Bloomberg
© 2021 Bloomberg Finance L.P. All rights reserved. : V. . X v' :: g '

: " o .t (3 ST RSIE . ot
ATt L B T CH R S L R AN AL A T P
- L e ta 3 Cavd % " . L
P AT T, SRS PSR 2R
A T A <
. H . - .

Background

 Historical dependency on spreadsheets (Excel)
« Complex row/column/cell level formulas

« Using Excel to connect to external systems (databases, Bloomberg API, etc.)

TechAtBloomberg.com | Bloomberg
© 2021 Bloomberg Finance L.P. All rights reserved. : V. . X v' :: g '

: " o .t (3 ST RS . ot
ATt L B T CH R S L R AN AL A T P
. M 0t e Y ta 3 Cavd % " .- L
N o A L7 L - S ey y ~
Pt e [: S gl <
. H . - .

Challenges

Excel does not scale for big data

Extremely error-prone/hard to automatically verify

Lack of transparency into how results are produced

Suboptimal for collaboration

TechAtBloomberg.com | Bloomberg
© 2021 Bloomberg Finance L.P. All rights reserved. : V. . X v' :: g .

TR AL TR T R SR R B A A A TP
o S ain e Ll tagd 5 3 o vl 0% " . e

- o wgrf el L TR sia Ay me B L

Pt e [: S gl <

. . S H

Industry is moving towards Python

Ruthless automation is the key to success!

Your Project:
e Research existing solutions, gaps in functionality

* Explore how translation could work for simple formulas; key is to build an
extensible framework

e Output would be a tool that can translate simple formulas

Potential for further collaboration beyond the scope of the project

TechAtBloomberg.com Bloomberg
© 2021 Bloomberg Finance L.P. All rights reserved. .) ¢ . N . . J j.. < " E] :
) .) R SR L L ;'}"?—"-’ *li‘..:..‘; _" et “ I ';,ﬂ s

Individual Research Project |l
with University of California Davis

UCDAVIS

UNIVERSITY OF CALIFORNIA

“The Wilderness holds answers to more questions than we have yet learned to ask.”

—Nancy Newhall

A Brief History of Types

* Assembly

pushl
movl
subl
call
movl
call
movl
movl
movl
cmpl
je
movl
movl
cmpl
jle
movl
movl
subl
movl
jmp
movl
movl
subl
movl
jmp
movl
push
call
addl
leave
mov
ret

%ebp

%esp, Y%ebp

$16, Jesp
getint

heax, -8(%ebp)
getint

%eax, -12(%ebp)
-8(%ebp), Yedi
-12(%ebp), Y%ebx
%ebx, %edi

D

-8(%ebp), Yedi
-12(%ebp), Yebx
hebx, Yedi

B

-8(%ebp), Yedi
-12(%ebp) , %ebx
hebx, %edi
%edi, -8(Y%ebp)
c

-12(%ebp), %edi
-8(%ebp), %ebx
%ebx, %edi
hedi, -12(%ebp)
A

-8(%ebp), Yebx
%ebx

putint
$4, Jesp
$0, %eax

B

B

L

\

) reserve space for local variables

/

read

store i

read

store j

load i

load j
compare

jump if i == j
load i

load j
compare
jump if i < j
load i

load j
i=1i-3j
store i

load j
load i
i
store j

load i

push i (pass to putint)
write

pop i

deallocate space for local variables

exit status for program

return to operating system

A Brief History of Types

* Assembly

feop
osp, obp rvo space for local variable
s16, tosp

gotin
eax, -8Cisbp)
getint

Yens, -1201ebp)
“8Cicbp) , todi
~12(lebp) , tabx
sobx, odi

8 Cisbp) , Yods
120ibp) , fobx
e

“8Clsbp) , Yedi
-121abp), tbx
sebs, edi
Yod, -8 Clabp)
c

B “LaGiep), fess #
SClebp), Tobx & load 1
obx, fods ITEEET
Yedi, -120iebp) # store §
c
o “Ciebp), Yebx # load
obx .
putint .
34, tosp #pop 3
dosllocate space for local variables
Bov 0, feax # oxit status for progran
ot # rotum to oporacing systen

A Brief History of Types

e Assembly

* Let’s constrain things: Types - Haskell

module Main (main) where
import Systam.Environment
pidgita n = 0 % (0O @ (1, 0, 1))
whore i % da
R e B
| True = [concat h ++
whore £ = { + 10
i*minnk
(h, t)

\e:® 44 show j +*

| k> n= (take (n mod™ 10) dm ++ replicate (k - n)

| True = splitAt 10 de
5 I A |
ian>a |l Eesn>=d=k#Fft

"\n*) =+ 3V

| Trueo = phow q : kX # (B %00, (a = (g * 10, d)

whore k = 3 + 1
th(n, a, d) =k & n
(q¢) = (B * 3 & &) "divNod™ d

js(n, a,d)=(n*) (a*n*>2)*ry d*y

where y = (1 * 2 + 1)
main = putStr , pidgits . read . head =<< gotArgs

A Haskellite

A Brief History of Types

e Assembly
* Let’s constrain things: Types - Haskell

A Brief History of Types

* Assembly
* Let’s constrain things: Types - Haskell

* Gradual typing: purity rituals
performed at runtime

* Gradual guarantee

A Brief History of Types

Assembly
Let’s constrain things: Types - Haskell

Gradual typing: purity rituals
performed at runtime

* Gradual guarantee

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen

Gradual typing is dead Noctissem Ui, Bosn, MA

Abstract

Programmers have come to embrace dynamically-typed languages
for prototyping and delivering large and complex systems. When it
romee tn maintainino and evnlvino thece eucteme the lack of ex-

many cases, the systems start as innocent prototypes. Soon enough,
though, they grow into complex, multi-module programs, at which
point the engineers realize that they are facing a maintenance night-
mare, mostly due to the lack of reliable type information.

A Brief History of Types

Assembly
Let’s constrain things: Types - Haskell

Gradual typing: purity rituals
performed at runtime

* Gradual guarantee
Gradual typing is dead

* Optimisation

* And...

The Optional Type Revolution

r L
4

Optional type inference
checks types only locally and
statically; it has no runtime
footprint

+ Fast
+ Finds local inconsistencies,

+ Supports navigation and
completion

- Partial guarantees; can give
a false sense of security

3 science!

Natural Experiment on Optional Types

def _get_samples

query_context: "QueryContext"|,| query_obj: "QueryObject", [force_cached: bool = False
-> Dict[str, Any]:

datasource = _get_datasource(query_context, query_obj)

query_obj = copy.copy(query_obj)

query_obj.is_timeseries = False

query_obj.orderby = []

query_obj.metrics = []

query_obj.post_processing = []

query_obj.columns = [o.column_name for o in datasource.columns]
return _get_full(query_context, query_obj, force_cached)

* How many types can mypy trivially infer?

* What is the impact of human added types?

* Which annotation slots are easier to type?

* Which slots are harder even for a human?

* What percentage of slots are typed in steady
state for a project?

Into the Wild: Type Usage in Python

Task
* Data analytics and analysis scripts

Skills
* Python, Continuous Integration, git, Basic statistics
* Ris a nice to have (if you don’t know it, you’ll learn it)

Wins
* A chance to shape the evolution of Python
* SSS A research paper SSS

Individual Research Project IV
with Y Combinator Startup Bloop

blocp, Combinator

https://bloop.ai/

It should be easier for developers to find
and share code

So we're building a search engine

Small team of ex- Backed by some of the top
Huawel, Imperial and VCs, including Khosla

Yale ML and compiler Ventures and Y Combinator
engineers

https://bloop.ai/

bloop.

IDE-based search engine

Retrieves relevant snippets
of code from open-source

Code contextual or natural
language search

Search is powered by NLP
and syntax analysis

Sharing code today Sharing code tomorrow

[ANA

O
(A

O —» () GitHub —» — Go g|€£ 8 & N blcop. o &
2 —

N N J -/
Distribution +
Distribution Discovery Discovery

The Project: Build a Smart Copy-Paste System

When users copy code from bloop
they have to manually edit variable
names to match their project

We want to automate this, renaming
free variables with variables in-scope in
the user's code

For each free variable find all valid

replacements and predict the most
likely

Skills:
Static analysis
Machine learning

HttpWebResponse response 2ol = null;
XmlDocument xmlDocument *! = new XmlDocument ();
try
{
using (Blog blog *3 = new Blog(_blogId*+))
:responsek5l='blogAGLSendAuthenticatedHttpRequestqnotificationUr1A7; 10000) ;

// parse the results
P 3
[§glggggggg31i,Loadqresponse °|.GetResponseStream()) ;

}
catch (Exception)
{
throw;
}
finally
{
if (responsexlo,!= null)
;responsexll.Close();

A4 _hostBlogId: 12%, BlogId: 10%, _buttonId: 10%, _blogId: 1%

A5 response: 86%, xmlDocument: 5%, notificationUrl: 3%

A¢ xmlDocument: 84%, blog: 12%, response: 2%

A7 NotificationPollingTime: 95%, CONTENT _DISPLAY_SIZE: 2%, notificationUrl: 1%
Ag xmlDocument: 100%, response: 9e-4, _buttonDescription: 4e-4

Ag response: 65%, xmlDocument: 30%, _hostBlogId: 4%

A19 response: 90%, _blogId: 3%, CurrentImage: 9e-3

A11 response: 98%, _settingKey: 1%, xmlDocument: 9e-3

Individual Research Project V
at World Renowned UCL

A Pair of Information Theory Projects

David Kelly, UCL

H(X)=-— Z P (z;)log, P (x;)

Earl T. Barr, UCL

A Pair of Information Theory Projects

W off

\ /"/‘l"‘ ‘\[‘

il w1
i | f,

5 Pay

Britain’s National Pastime in the 215t Century:
It’s no longer about birds, it’s all about flows!

Earl T. Barr, UCL

A Pair of Information Theory Projects

HMS Beagle in the Straits of
Magellan at Monte Sarmiento,
reproduction of R. T. Pritchett's
frontispiece from the 1890
illustrated edition of The Voyage
of the Beagle.

Julia Margaret Cameron,
Public domain, via
Wikimedia Commons R. T. Pritchett, Public domain, via Wikimedia Commons

https://en.wikipedia.org/wiki/Straits_of_Magellan
https://en.wikipedia.org/wiki/Monte_Sarmiento
https://en.wikipedia.org/wiki/Robert_Taylor_Pritchett
https://en.wikipedia.org/wiki/The_Voyage_of_the_Beagle

A Pair of Information Theory Projects

CHARLES DARWIN
Yoyage of the HMS Beagle

Falmouth'. Plymouth 1831-36
Dctober 1836 o December 1831
MORTH Azores EUROPE ASIA
AMERICA Archipelago
September 1836
ATLANTIC Madeira Is.
Tropic of Cancer OCEAN CanaryIs.
PACIFIC b V"dfsgi
GORAN Galapagos o i SRR
Equator e St Petecant: INDIAN PACIFIC
L L& 00 “ OCEAN Cocos OCEAN
Tahiti cension I. Mauritius I,

November 1

Bay of
AUSTRALIA B!aqs

Tropic of Capricorn

King George
July 1832 Good Hope Sougd
May 1836

Falkland Islands

March 1833

Cape Homn 0 1500 3000 mi
| S U—

0 2250 4500 km

© Encyclopaadia Britannica, Inc.

Charles Darwin: HMS Beagle voyage
A map of Charles Darwin's voyage on the HMS Beagle in 1831-36.

Encyclopeedia Britannica, Inc.

https://cdn.britannica.com/44/182344-050-5ECEF0AD/map-voyage-Charles-Darwin-HMS-Beagle.jpg

W h at Bl rd S Are We Afte r? Quantified Information Flow

Direction of flow

Random Variables

(source: pascal-martin.fr)

http://extern.pascal-martin.fr/so/kcachegrind/kcachegrind-2-small.png

QIF and the End of the Universe

Problem: QIF is expensive!

Computing QIF can mean
waiting to see how the

universe ends

https://phys.org/news/2015-09-fate-universeheat-death-big-rip.html

Earl T. Barr, UCL

RIF Don’t Quantity

The solution is David Kelly’s
PhD work on ranked

information flow (RIF).

RIF ranks flows, it doesn’t
measure them.

Steve Banks, CC BY-SA 4.0

<https://creativecommons.org/licenses/by-sa/4.0>,
via Wikimedia Commons

Earl T. Barr, UCL

What Birds Are We After?

valid_string_length: 0.01

check_label: 0.01

Implications: Mg

N
N

\

(2) Error condition testing is inadequate @~ T------ -
(3) a potential mismatch between

function names — encode and

decode — and their flows

(1) A name refactoring " IDNAError %

0.9
0.8
0.7
0.6
0.5
0.4
. 0.3
. 0.2
il

IT Project I: Information Theoretic Surveying

The project will empirically map flows to programming constructs and idioms.

Open Problems Tackled
* |dentifying paths that will be frequent in deployment
* |dentifying core logic paths

Wins

* Focused optimization, testing or review

Tasks & Skills Needed: Python, basic statistics, imagination!

IT Project II: Finding Information Leaks

Solution 1
Write correct programs
But “to error is human”

Heartbleed leaks about 14 bits of Solutlon- 2
information, larger than the average Automatically detect and correct
password. But this is undecidable

Earl T. Barr, UCL

IT Project II: Finding Information Leaks

Solution 3
Detect and manually correct anomalies

Heartbleed leaks about 14 bits of

information, larger than the average
password.

Earl T. Barr, UCL

Challenge: Efficient Observation

Ben Liblit 4& Compare the two.

§ Cooperative

\" £ Bug Isolation
» Winning Thesis of the

2005 ACM Doctoral Dissertation Competition

A/B Testing: Dynamically give different versions to
your customer base to test the effect of changes.

Solution: Use existing A/B frameworks to create CBI variants.

Earl T. Barr, UCL

IT Project II: Brass Tacks

Tasks

* |dentify a suitable web app
* Instrument a web app
* Mock up server for “realistic” testing

Skills: Python, basic stats, and at least as much imagination as any
of the other projects

Wins: SSS More secure software at little cost to the enduser SSS

Earl T. Barr, UCL

Project |deas

Morphir
IR

Alex Brisan, Bloomber
Attila Mihaly, Morgan Stanley X Bri g

bloop.

https://bloop.ai/

Gabriel Gordon-Hall, Founder

IT Survey Join me and together we'll

RIF-ing for Leaks ;
plunder the Dragon’s Den!

David Kelly, UCL
Earl T. Barr, UCL

https://bloop.ai/

